IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1961

The crystal structure of bismuth monochloride

Alexander Hershaft *Iowa State University*

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Physical Chemistry Commons</u>

Recommended Citation

Hershaft, Alexander, "The crystal structure of bismuth monochloride " (1961). *Retrospective Theses and Dissertations*. 2435. https://lib.dr.iastate.edu/rtd/2435

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

This dissertation has been 61-3037 microfilmed exactly as received

HERSHAFT, Alexander, 1934-

THE CRYSTAL STRUCTURE OF BISMUTH MONOCHLORIDE.

Iowa State University of Science and Technology Ph.D., 1961 Chemistry, physical

University Microfilms, Inc., Ann Arbor, Michigan

THE CRYSTAL STRUCTURE OF BISMUTH MONOCHLORIDE

by

Alexander Hershaft

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean of Graduate College

Iowa State University Of Science and Technology Ames, Iowa

TABLE OF CONTENTS

	Page
INTRODUCTION	1
The ProblemSolution of Bismuth in Liquid Bismuth Trichloride The Story of BiCl and Related Compounds	1 4
EXPERIMENTAL PROCEDURE	7
Preparation of Crystals Determination of Density Diffraction Data Treatment of Intensities	7 10 14 16
STRUCTURE DETERMINATION	20
Vector Maps Calculation of Structure Factors Electron Density Maps	20 36 40
STRUCTURE REFINEMENT AND FUNCTIONAL ANALYSIS	47
Refinement of Structure Weighting of Intensities Functional Analysis	47 52 56
DISCUSSION	60
Interpretation of Structure Reliability of Model Conclusions	60 62 65
SUMMARY	68
LITERATURE CITED	70
ACKNOWLEDGEMENTS	73
APPENDIX A: COMPUTER PROGRAMS	75
Absorption Correction and Sharpening Program Standard Deviations Program	75 81
APPENDIX B: OBSERVED AND CALCULATED STRUCTURE FACTORS	86

To the memory of my father whose exemplary life and untimely martyrdom provided the original stimulus and

To my mother who sentenced herself to ten years of solitude in order that I may attain this height of academic achievement.

INTRODUCTION

The Problem--Solution of Bismuth in Liquid Bismuth Trichloride

Solutions of metals in their molten salts are of current interest because of unanswered questions concerning the mechanism of solution and the type of species which are formed. Contributions to a better understanding of these solutions have been made through measurements of vapor pressures, phase equilibria, freezing point depressions, electrical properties, and absorption spectra. Still, the species and equilibria in solution are not defined adequately and there exist at present almost as many pet theories as there are men of science who have given of their time and effort to the problem.

The three principal models currently being considered for solution mechanism involve the formation of (1) neutral metal atoms or molecules, (2) metal ions plus solvated electrons, or (3) reduced ions or molecules. The last view, credited with the greatest degree of support, has been championed vigorously by Corbett (Corbett <u>et al.</u>, 1957; Corbett, 1961). The Bi-BiCl₃ system is of particular interest in this connection because the reduced salt, identified as bismuth monochloride^{*}

^{*}The term "bismuth monochloride" and the symbol BiCl will be used throughout this work for the sake of convenience to designate the compound whose crystallographic formula turns out to be BiCl_{1.17}.

precipitates out of solution as a solid phase.

Cubicciotti, the major exponent of the first two theories (Cubicciotti, 1952, 1960a; Keneshea and Cubicciotti, 1958), argued that positive deviations from Raoult's law in the $Bi-BiCl_3$ system deny the existence of individual lower valent ions in solution (Cubicciotti <u>et al.</u>, 1958). He acknowledged, however, that reduced polymeric ions like Bi_n^{+m} would fit his data for the vapor pressure of Bi dissolved in $BiCl_3$. According to Cubicciotti, Bi atoms or ions, upon solution, enter the octahedral holes in the quasi-lattice of the molten chloride.

The cryoscopic data of Mayer <u>et al</u>. (1960) indicated Bi_2Cl_2 as the principal constituent of moderately concentrated solutions near the BiCl₃ liquidus curve. Concurrently, Bredig (1959) proposed the presence of both the Bi₂ and Bi_2Cl_2 species, with the former becoming more prevalent at high temperatures, to reconcile the vapor pressure and cryoscopic results. Yosim <u>et al</u>. (1959) noted that the presence of neutral dimers or Bi_2^{++} ions is consistent with electrical conductivity, vapor pressure and magnetic susceptibility measurements. They also pointed out, however, that no single species or mechanism is sufficient to explain the entire phase diagram and particularly the retrograde solubility above the syntectic temperature.

More recently, Topol et al. (1961) studied the Bi-BiCl3

system by e.m.f. measurements. They observed a Nernst n = 2, corresponding to the species BiCl, at low metal concentrations $(N_2 < .01)$, whereas slightly higher concentrations yielded n values of 6 and even 8. The authors concluded that both BiCl (or Bi⁺) and Bi₄Cl₄ are likely to be present in solution, the latter becoming predominant with increasing Bi concentration. The presence of other species such as Bi₂, Bi₃Cl₃ and Bi₃⁺ was not excluded.

Interpretation of thermodynamic data in fused salt systems for the purpose of identifying the species formed involves broad assumptions about such concepts as activity coefficients and formation of solid solutions and it is not surprising that attempts along this line have met with rather limited success. The more direct, physical methods have been showing greater promise. Already the discovery of the diamagnetic character of these solutions has narrowed considerably the range of possible species.

More recently, two structural studies made significant contributions to the available evidence. Measurement of the visible absorption spectra by Boston and Smith (1960) provided first direct evidence for the existence of two species in solution. Although these have not been positively identified, it appears that the species prevalent at very low bismuth concentrations (0.01 M) was the Bi atom or the Bi⁺ ion. This is consistent with Holecek's (1953) observation that magnetic

susceptibility increases with decreasing metal concentration in this concentration region. The second study, by Levy <u>et al</u>. (1960), in the form of x-ray diffraction on molten and crystalline $BiAlCl_4$ apparently indicates the presence of Bi_3^{+3} ions in both phases.

Although no definite conclusions have been reached at this stage, certain general notions have transpired. The formation of several reduced species has been pretty well established. Furthermore, it appears very likely that these species are Bi⁺ or BiCl at very low metal concentrations with some degree of polymerization taking place as the bismuth content is increased. An approach more direct and complete than any tried before was definitely indicated at this stage. Just as inspection of fossilized remains in ancient rocks gave man his first glimpse of early life forms, vital clues to the nature of the solute species were expected from a study of their frozen equilibrium in a crystal structure.

The Story of BiCl and Related Compounds

In 1908, Eggink presented the first substantial characterization of the Bi-BiCl₃ system in the form of a phase diagram. He observed that when the two-liquid phase obtained with excess metal was cooled, an intermediate solid phase separated at a temperature higher than the melting point of either component. Eggink's claim of isolating BiCl by

ether extraction of the trichloride from the mixture has since been questioned by Corbett (1958).

Some 40 years later, Sokolova (1952) redetermined the Bi-BiCl₃ phase diagram and, subsequently, reported x-ray and microstructure observations on the system, (Sokolova <u>et al</u>., 1954). With the aid of powder patterns she detected the new phase in quenched Bi-BiCl₃ solutions and claimed for it the BiOCl structure on the basis of similar intensity distributions.

The third and most thorough study was due to Yosim <u>et al</u>. (1959) who published the complete phase diagram for the system. As Eggink and Sokolova before them, they recognized the presence of an intermediate phase with an approximate BiCl stoichiometry but made no attempt to isolate it.

The elusive monohalide was finally cast into the limelight by Corbett (1958) who isolated the compound and described its properties in some detail. Subsequently, Darnell and Yosim (1959) presented a thermodynamic characterization of solid BiCl and Cubicciotti (1960b) reported equilibrium data for BiCl gas. Corbett's preliminary powder pattern data agreed well with those deduced by Holecek (1953) but bore little resemblance to the patterns reported by Sokolova <u>et al</u>. It appears likely that the presence of hydration and hydrolysis products was responsible for the discrepancy and for the presence of BiOCl lines in her powder

patterns. On the basis of certain properties of BiCl such as its diamagnetic character and the high viscosity of its solutions, Corbett predicted cyclic polymerization in the crystal.

Wolten and Mayer (1958) were able to index powder patterns of BiCl₃ on the basis of a primitive cubic unit cell with $a_o = 8.14$ Å and space group $P2_13$. Concurrent calculations based on BiCl powder patterns led Wolten^{*} to claim a hexagonal unit cell for the monohalide. In the vapor phase, BiCl₃ was found to consist of pyramidal molecules with a Bi-Cl bond length of 2.48 Å and a Cl-Bi-Cl angle of ~ 100° (Skinner and Sutton, 1940). Levy <u>et al.</u> (1959) found from x-ray diffraction studies of molten, polycrystalline and monocrystalline BiAlCl₄ that the Bi atoms apparently form equilateral triangles with a Bi-Bi bond length of 3.04 Å. Solid BiAlCl₄ crystallizes in the rhombohedral system with $a_o = 12.12$ Å, $\alpha = 58°23'$, z = 6 and space group R3c, which conveniently accommodates 2 Bi₃⁺³ units.

In closing, mention should be made of the compound $Bi_{24}O_{31}Cl_{10}$ for which the chief connection with this work lies in its outsized unit cell. An idealized model for this structure was proposed by Sillen and Edstrand (1942). The model featured 24 Bi atoms in a unit cell of approximately 30 x 10 x 4 Å. Bi-Cl bond lengths of 3.30 Å and 3.45 Å were measured.

Wolten, G. M., Atomics International, Canoga Park, California. Powder patterns of BiCl. Private communication. 1958.

EXPERIMENTAL PROCEDURE Preparation of Crystals

Preparation of bismuth monochoride has been described by Corbett (1958). Mixtures containing up to 76% BiCl were synthesized by equilibration of BiCl₃ with excess metal at 325° in a sealed Pyrex tube, followed by the reduction of temperature to 270° over a period of one to two weeks. Each time, the tube was opened in an inert atmosphere and single crystals of BiCl projecting from the matrix were picked out manually. Over 100 crystals were obtained in this manner.

BiCl crystallizes in the form of shiny black prisms with a flattened hexagonal cross section. Upon contact with the atmosphere, signs of surface decomposition became evident within two days. After 10 days of exposure, deterioration of the crystals had progressed to the stage where diffraction would be no longer practical. Figure 1 shows some of the larger specimens found. The surfaces bear traces of the hydrolyzed matrix which was removed during the shaping operation.

Because of the high absorption coefficient of Bi atoms, the crystals had to be ground into regular shapes in order that a convenient and accurate absorption correction could be applied to the observed diffraction intensities. Cylindrical shapes were attained by rolling crystals over fine emery

Figure 1. Crystals of BiCl; the largest specimen measures 136 x 368 x 1670 μ

.

paper with the bare finger. One of these cylinders is shown in Figure 1. Spheres were prepared with the aid of a circular abrasive track patterned after Bond (1951).

Some 25 cylindrical and spherical crystals of diverse size and degree of regularity were mounted in hand drawn, evacuated capillaries. This precaution insured that all diffraction data could be taken with the same crystal. Preliminary Weissenberg photographs were taken of each crystal and the most suitable specimen was selected on the basis of dimensional uniformity, intensity and neatness of reflection spots, and alignment with the axis of rotation. Spheres were rejected <u>en masse</u> because they produced weak reflections with extensive smudging.

Optimum thickness for the diffraction specimen was originally calculated according to Buerger's (1942, p. 180) formula t = $2/\mu$, where t is the thickness of the crystal and μ is the linear absorption coefficient. The value t = 2/1513= .0013 cm, thus obtained, was found unsatisfactory during the preliminary diffraction exposures and a cylinder .0320 cm long with a diameter of .0098 cm was eventually selected.

Determination of Density

Determination of the experimental density of BiCl presented a special problem because the crystals were too heavy for the floatation technique and too scarce for the macro-

pycnometric method. Corbett* had obtained a macro-pycnometric value of 6.54 g/cc by measuring the density of a BiCl-BiCl₃ mixture and correcting for a small trichloride impurity. Since this value did not agree with the assumed stoichiometry of the crystal, it was decided to experiment with two other more direct approaches.

The dimensions of seven of the largest regularly shaped crystals were carefully measured under a binocular microscope and their weights were determined on a microbalance by Mr. Robert Bachman of the Ames Laboratory. Their average density of 6.05 g/cc was considered unreliable because of considerable variation among individual determinations and the likelihood that surface imperfections made this value too low.

Subsequent efforts to measure density by weighing crystals in air and in heavy liquid failed, giving way to the development of a micropycnometric approach which offered very good precision while requiring only several milligrams of material. The apparatus employed in the micropycnometric technique is shown in Figure 2. The micropycnometer can be conveniently manufactured from capillary tubing. After its volume had been determined by the conventional method, the

^{*}Corbett, J. D., Department of Chemistry, Iowa State University of Science and Technology, Ames, Iowa. Determination of the density of BiCl. Private communication. 1958.

Figure 2. Micropycnometric density apparatus

pycnometer was cleaned, weighed on a microbalance, loaded with crystals, and reweighed. This assembly was then placed in the sample container and the side arm was filled with 1bromonaphthalene, selected for its low vapor pressure and chemical inertness. The density of 1-bromonaphthalene was measured with the same pycnometer, and found to be 1.4997 \pm .003 g/cc at 25° as compared with the literature value of 1.4785 g/cc (Jones and Lapworth, 1914). The sample container was evacuated to remove all traces of air from the crystals and liquid alike, following which 1-bromonaphthalene was allowed to enter the pycnometer by turning the side arm upward. In the last step, the micropycnometer containing crystals and liquid was removed from the sample container, wiped clean, and weighed.

Calculations were carried out according to the formula

$$\rho_{c} = \frac{w_{c}}{v_{p} \rho_{l} - w_{c+l} + w_{c}} \rho_{l}$$

where the symbols $\rho_{,\circ}w$, and v denote density, weight, and volume and the subscripts p, c, and I refer to pycnometer, crystals, and liquid, respectively. Individual determinations were made on five batches of crystals. Their average value of $6.54 \pm .05$ g/cc was identical with Corbett's result and was accepted as the true density of BiCl.

13

÷, *

Diffraction Data

Preliminary Weissenberg and precession photographs indicated an orthorhombic unit cell. Lack of systematic extinctions for the hk! and hk0 data in conjunction with the extinction conditions h + l = 2n + 1 for h0! data and k + l= 2n + 1 for Ok! data, allowed the choice of space groups Pnn and Pnnm. Figure 3 illustrates the location of symmetry elements in space group Pnnm and lists the general coordinates of the two symmetry sets allowed by extinction rules.

Precision lattice constants were measured by the conventional Weissenberg back reflection method (Buerger, 1942) using unfiltered Cu, Cr, and Co radiation. Their values were $a_{\circ} = 23.057 \pm .002 \text{ Å}$, $b_{\circ} = 15.040 \pm .007 \text{ Å}$, c_{\circ} (the needle axis) = 8.761 \pm .003 Å. On this basis, 48 BiCl molecules per unit cell were most likely, resulting in a calculated density of 6.41 g/cc.

All intensity data were taken with Cu Ka radiation. A molybdenum target could not be used because it produced fluorescence in bismuth. Multiple film Weissenberg photographs were taken for layers hk0, hk1, hk2, hk3, hk4, hk5 by the equi-inclination technique (Buerger, 1942). Exposure times varied between 120 and 180 hours. Precession exposures of 2, 4, 8, 16, and 32 hours were taken of layers h01, h11, and Ok1 in order to supplement the Weissenberg data at low

$x, y, 0; \bar{x}, \bar{y}, 0; \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2}; \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2}$

Figure 3. Symmetry elements and general coordinates of space group Pnnm

angles.

Weissenberg films were judged visually against series of standard spots prepared separately for each layer to allow for wear and changing spot shape. The film factor was checked against visual observations and adjusted in accordance with spot intensity. Reflections appearing on different films in a pack were double checked until their observed values agreed within 10% or less. For each layer, uniform portions of the reciprocal lattice were exposed on a single film pack to provide a basis for converting all Weissenberg intensities to the same relative scale. Precession reflections were judged against a selected spot appearing on the hOI films. These were subsequently brought in line with the rest of the data by comparing intensities of reflections common to Weissenberg and precession films. In all, 1938 observed reflections were judged. The 566 unobserved reflections, which were not subject to systematic extinctions, were assigned a value equal to 60% of the lowest observable intensity for that layer. Table 1 lists the number of reflections obtained for each layer.

Treatment of Intensities

Before the observed intensities could be used in structure determination, they had to be corrected for the Lorentz factor, polarization, absorption, and multiplicity.

Lorentz and polarization corrections were applied to the

Layer	Weissenberg observed	Reflections unobserved	Precession reflections	Total reflections
hk0	357	89	3	449
hkl	338	101	6	445
hk2	330	103	5	438
hk3	312	106	3	421
hk4	308	81	4	393
hk5	287	68	3	358
Total	1932	548	24	2504

Table 1. Number of reflections

Weissenberg intensities by means of the I.B.M. 650 computer using INCOR-IM, a locally-modified version of the INCOR-I program (Zalkin and Jones, 1957). Precession data were handled with the aid of Olson's^{*} correction program.

A new approach to the calculation of absorption corrections was recently presented by Bond (1959) ending Bradley's (1935) 24 year hegemony in this field. Figure 4 illustrates the marked discrepancy between the two treatments. An absorption correction and sharpening (ACS) program, based in part on Bond's paper, was written for the I.B.M. 650 computer.

Olson, D. H., Department of Chemistry, Iowa State University of Science and Technology, Ames, Iowa. Correction program for precession intensities. Private communication. 1960.

Figure 4. Absorption correction plots; $\mu R = 8.0$

The program is designed to apply absorption corrections to Weissenberg data from cylindrical and spherical crystals and to "sharpen" intensities according to the method proposed by Patterson (1935) and developed by Lipson and Cochran (1957, p. 170). A detailed program writeup is given in Appendix A.

Absorption corrections are listed in Bond's paper as a function of Θ and μR , where Θ is the Bragg angle and μ is the linear absorption coefficient. R is defined by the relation

$R = R_0 \sec \nu$,

where v is the angle between the incident x-ray beam and a plane normal to the cylinder axis. In the present case, $\mu = 1513 \text{ cm}^{-1}$ and $R_0 = 9.8 \times 10^{-3} \text{ cm}$, so that R = 7.4 sec v.

Plots of absorption correction \underline{vs} . $\sin^2\theta$ were prepared for different values of μR , as required by the program, and corrected intensities were computed for all Weissenberg reflections by means of the ACS program. Absorption-corrected precession intensities were read off a plot of W_{LPA}/P_{LP} <u>vs</u>. $\sin^2\theta$, where W and P stand for Weissenberg and precession intensities and L, P, and A indicate that the Lorentz, polarization, and absorption corrections have been applied. The conversion of all intensities to the same scale took place during this step.

Division by the appropriate multiplicity factors was accomplished during the routine operations prior to the summation of the Fourier series.

The approach to structure determination was based on the "heavy atom" technique. This assumes that the correct assignment of bismuth positions will establish the phase angles of most large reflections and thus lead to the determination of chlorine positions by Fourier methods.

Trial structures were based on interpretation of Patterson vector maps. Conventional and difference Fourier maps were employed to locate chlorine atoms.

Vector Maps

The general form of the Patterson function is

$$P(XYZ) = \frac{1}{V} \sum_{h \in K} \sum_{k=-\infty}^{\infty} F(hkl)^{2} \exp 2\pi i (hX+kY+lZ),$$

where X, Y, and Z designate grid points of the unit cell rather than atomic coordinates, V is the volume of the unit cell, and F is a quantity to be discussed later, known as the structure factor. In space group Pnnm, the relation F(hkl) = $F(\bar{h}kl) = F(h\bar{k}l) = F(hk\bar{l})$ holds for all reflections. Consequently, the above expression reduces to

 $P(XYZ) = \frac{8}{V} \sum_{h} \sum_{k} \sum_{k} \sum_{l=0}^{\infty} F(hkl)^{2} \cos 2\pi hX \cos 2\pi kY \cos 2\pi lZ$

or, more specifically, to

$$P(XYZ) = \frac{1}{V} F^{2}(000) + \frac{2}{V} \left[\sum_{h=1}^{\infty} F^{2}(h00) \cos 2\pi hX \right]$$

$$+ \sum_{k=1}^{\infty} F^{2}(0k0) \cos 2\pi kY + \sum_{\ell=1}^{\infty} F^{2}(00\ell) \cos 2\pi \ellZ \right]$$

$$+ \frac{4}{V} \left[\sum_{h=1}^{\infty} \sum_{k=1}^{\infty} F^{2}(hk0) \cos 2\pi hX \cos 2\pi kY \right]$$

$$+ \sum_{h=\ell=1}^{\infty} \sum_{\ell=1}^{2} F^{2}(h0\ell) \cos 2\pi hX \cos 2\pi \ellZ$$

$$+ \sum_{k=\ell=1}^{\infty} \sum_{\ell=1}^{2} F^{2}(0k\ell) \cos 2\pi kY \cos 2\pi \ellZ \right]$$

$$+ \frac{8}{V} \left[\sum_{h=1}^{\infty} \sum_{k=1}^{\infty} F^{2}(hk\ell) \cos 2\pi hX \cos 2\pi \ellZ \right]$$

As the first step, a sharpened hkO Patterson projection was computed and plotted since, up to that point, the only indication of the complexity of the structure was the large volume of the unit cell for a compound with an apparently simple stoichiometry. The form of the two-dimensional function is

$$P(XY0) = \frac{1}{A} F^{2}(000) + \frac{2}{A} \begin{bmatrix} \infty \\ \Sigma \\ h=1 \end{bmatrix} F^{2}(h00) \cos 2\pi hX$$
$$+ \frac{\infty}{k=1} F^{2}(0k0) \cos 2\pi kY + \frac{4}{A} \begin{bmatrix} \Sigma \\ \Sigma \\ h=1 \end{bmatrix} F^{2}(hk0) \cos 2\pi hX$$
$$h k=1$$
$$\cos 2\pi kY \end{bmatrix}$$

The 360 observed hk0 intensities were multiplied by means of

the ACS program by the sharpening factor $(\sum Z_j / \sum f_j)^2$ where Z_j is the atomic number and f_j , the dispersion-corrected scattering factor of atom j. The summing code specifying the evenness or oddness of indices was supplied and special reflections were divided by their appropriate multiplicity factors.

Summation was performed on the I.B.M. 650 computer using the TDF-2 program (Fitzwater and Williams, 1959). Results were tabulated on the I.B.M. 420 tabulator with the aid of a special wiring panel which expands the basic $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$ portion of the unit cell into the desired $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ octant. The mmm symmetry of the vector map made it unnecessary to consider the entire unit cell. A contour map of the sharpened hkO Patterson projection is shown in Figure 5.

The vectors which these peaks represent were classified as intraset or interset according to whether they referred to atoms of the same or different symmetry sets. The mode of attack consisted of the selection of possible Bi positions on the basis of intraset vectors, and subsequent use of interset vectors for verification. The general coordinates of intraset and interset vectors, based on the four-fold set of Figure 3, are listed in Tables 2 and 3 along with their respective multiplicities.

The major peaks along the right hand edge and the upper edge of the vector map were very likely to represent in part

Figure 5. Sharpened Patterson projection onto the (001) plane

Vectors			Multip 8-fold		
0	0	0	8	4	
0	0	<u>+</u> 2z	4		
<u>+</u> 2x	<u>+</u> 2y	0	2	1	
<u>+</u> 2x	∓2y	0	2	1	•
<u>+</u> 2x	<u>+</u> 2y	<u>+</u> 2z	1		
<u>+</u> 2x	<u>+</u> 2y	∓2z	1	_	
<u>+</u> 2x	∓2y	<u>+</u> 2z	· 1		
<u>+</u> 2x	∓2y		1		
<u>ե</u> 2x	łz	łz	4	2	
¹ ⁄₂ <u>+</u> 2x	łz	¹ <u>2+</u> 2z	2		
¹ ∕2 <u>+</u> 2x	łz	½+2z	2		
12	<u>ځ+</u> 2у	12	• 4	2	
12	<u></u> հ_+2y	¹ <u>2+</u> 2z	2		
12	ӄ <u>+</u> 2у	5+2z	2		

Table 2. Intraset vectors

.

Vectors			Vectors			
<u>+</u> ∆x	<u>+</u> ∆y	<u>+</u> ∆z	¹ <u>2+</u> Δx	¹ 2±Σγ	¹ 2 <u>+</u> Δz	
<u>+</u> ∆x	<u>+</u> ∆y	∓∆z	¹ ∕2 <u>+</u> ∆x	^Ϟ ź <u>Ⴕ</u> Σy	½+ ∆z	
<u>+</u> ∆x	÷∆y	<u>+</u> ∆z	¹ ∕ <u>2+</u> ∆x	'n₽∓Σγ	¹ ⁄2 <u>+</u> ∆z	
<u>+</u> ∆x	τų	∓∆z	¹ ∕2 <u>+</u> ∆x	Ϟ∓Σγ	'z∓∆z	
<u>+</u> ∆x	<u>+</u> ∆y	<u>+</u> Σz	¹ 2+ Σx	א <u>ל+</u> עז	¹ 2 <u>+</u> Σz	
<u>+</u> ∆x	<u>+</u> ∆y	ŦΣz	¹ <u>γ+</u> Σx	<u>ӄ∓</u> ⊽λ	ł∓Σz	
<u>+</u> ∆x	∓ ∆y	<u>+</u> Σz	¹ 2±Σx	'n₂∓∆у	¹ z+ Σz	
<u>+</u> ∆x	∓ ∆y	- Σ 2	¹ <u>2+</u> Σx	ӡ∓ду	ł∓ ∑z	
<u>+</u> Σx	<u>+</u> Σy	<u>+</u> Σz	¹ 2±Σx	<u>אַ+</u> ∆y	¹ z± ∆z	
<u>+</u> Σx	<u>+</u> Σy	∓ Σz	¹ z ±Σx	<u>ъ́±</u> ду	ż∓∆z	
<u>+</u> Σx	ŦΣy	<u>+</u> Σz	¹ 2 <u>+</u> Σx	λ₽±Ωλλ	¹ 2 <u>+</u> ∆z	
<u>+</u> Σx	∓ Σy	ŦΣz	¹ 2 <u>+</u> Σx	'nγ∓∆γ	½∓ ∆z	
<u>+</u> Σx	<u>+</u> Σy	<u>+</u> ∆z	¹ <u>2</u> +Δx	¹ <u>2</u> +Σy	¹ 2 <u>+</u> Σz	
<u>+</u> Σx	<u>+</u> Σy	– +∆z	¹ 2 <u>+</u> Δx	¹ 2 <u>+</u> Σy	łz∓ Σz	
<u>+</u> Σx	ŦΣy	<u>+</u> ∆z	¹ 2 <u>+</u> Δx	' ź∓Σγ	¹ z <u>+</u> Σz	
<u>+</u> Σx	∓Σγ	∓∆z	¹ 2 <u>+</u> Δx	'n₹Σγ	Ż∓ Σz	

Table 3. Interset vectors. Δz and Σz transform to z for vectors between 8- and 4-fold sets and to 0 for vectors between 4- and 4-fold sets; each vector has a multiplicity of 2

the intraset vectors $\frac{1}{2}, \frac{1}{2}\pm 2y, 0$ and $\frac{1}{2}\pm 2x, \frac{1}{2}, 0$, respectively. The positions of these peaks were thus used to compile a list of possible x and y values which were subsequently paired by checking for the presence of corresponding 2x, 2y, 0 peaks within the body of the map. The characteristic Patterson ambiguity due to the four possible sign combinations was resolved by arbitrarily assigning one position as the site of a reference Bi atom from the set of four which was derived from the strongest and best defined vector peaks. This fixed the origin of the unit cell and provided a basis for interset verification.

Some 40 independent positions satisfied the interset requirements listed in Table 3 with respect to the reference atom. The task at hand was to select at least five from amongst these which would satisfy all interset requirements with respect to each other as well. Six independent positions could generate the minimum number of (eight-fold) symmetry sets required.

To this end, all 40 positions were listed in table form and the presence or absence of peaks corresponding to interset vectors was noted for each pair. The search for a self-consistent group of positions was conducted according to a systematic and efficient procedure developed especially for this purpose. Still, the large degree of overlap of projected electron densities and the reduction in the number of

checks due to the lack of z parameters soon rendered the task highly impractical.

In order to overcome these handicaps, it was decided to tackle the problem via a sharpened three-dimensional Patterson map. The procedure for obtaining corrected three-dimensional data has been described in the experimental section. A total of 1956 observed reflections was used in the summation. Sharpening and other preliminary operations were performed in the manner outlined for the two-dimensional case. Computation times for the different permutations of indices and grid dimensions were calculated and the sequences h, k, *1* and 1/80, 1/40, 1/40 were selected. Summation was again performed on the I.B.M. 650 computer using the TDF-2 program but this time the I.B.M. 407 tabulator was used to tabulate and print the results directly on a grid suitable for plotting contours. This last step saved the time of copying hundreds of thousands of electron density values by hand.

An absolute scale factor k (such that $F_0 \cdot \sqrt{k} = F_c$) and an average temperature factor B (such that $f = f_0 \exp -B \frac{\sin^2 \theta}{\lambda^2}$) were evaluated from a plot of log $\langle F_0^2 / \Sigma f_0^2 \rangle \underline{vs} \cdot \langle \frac{\sin^2 \theta}{\lambda^2} \rangle$ according to the relation

$$\log \left< \frac{F_0^2}{\Sigma f_0^2} \right> = \log \frac{1}{k} - \frac{2B}{2.303} \left< \frac{\sin^2 \Theta}{\lambda^2} \right>$$

derived by Wilson (1942). These were found to be $\frac{1}{8}$ \sqrt{k} = 12.2

(for 1/8 of the unit cell) and $B = 2.72 \text{ cm}^2$. The height of the Patterson origin peak was calculated by two approaches using these values of k and B. This led to the assignment of experimental peak heights to the interatomic vectors and to the conversion of the $F^2(000)$ term to the "floor" value.

In computing the Patterson synthesis it is customary to neglect the $F^2(000)$ term and the 8/V factor. Consequently, the relation between the theoretical and the experimental Patterson functions is expressed by

$$P_{\text{theo}}(XYZ) = \frac{8}{V} k P_{\text{exp}} + \frac{1}{V} F^2(000).$$

 $F^{2}(000)$ can be calculated from the definition of a structure factor:

$$F(hkl) = \sum_{n = 1} f_n \exp 2\pi i (hx_n + ky_n + lz_n),$$

so that

$$F^{2}(000) = \sum_{n=1}^{\infty} f_{n}^{2} = [48(18+78)]^{2} = 2.074 \times 10^{7}.$$

Since V = 23.057 \cdot 15.040 \cdot 8.761 \mathring{A} = 3038 \mathring{A}^3 , k = (8 \cdot 12.2)² = 9.5 \cdot 10³, and P_{exp}(000) = 27,150, the theoretical height of the origin peak is given by

$$P_{\text{theo}}(000) = \frac{8}{3038} \cdot 9.5 \cdot 10^3 \cdot 27,150 + \frac{1}{3038} \cdot 2.079 \cdot 10^7$$
$$= \underline{6.858 \cdot 10^5}.$$

The second approach, due to Atoji (1957), defines the height of the sharpened peak at the origin by

$$P(000) = \int_{\circ}^{\circ} 4\pi s^2 \frac{f_j(s) f_k(s)}{(\sum_{i} f_i / \sum_{i} z_i)^2} \exp(-\frac{B}{2} s^2) ds$$

where $s = (2 \sin \theta)/\lambda$, s_0 is the maximum value of s, f denotes the scattering factor, and z, the atomic number. By letting $\hat{f} = \hat{f} \cdot z$ and B/2 = g this expression simplifies to

$$P(000) = \sum_{i} z_{i}^{2} \int_{0}^{s_{0}} 4\pi s^{2} \left(-\frac{B}{2} s^{2}\right) ds$$

and is evaluated by letting $\int_{0}^{s_{0}} (\cdot) = \int_{0}^{\infty} (\cdot) - \int_{s_{0}}^{\infty} (\cdot) ds$ where the
value of $\int_{0}^{\infty} (\cdot)$ is given in the standard integration tables and
 $\int_{s_{0}}^{\infty} (\cdot) ds$ is the Patterson termination error. Consequently
 $\int_{s_{0}}^{s_{0}} (\cdot) = \frac{\pi}{2} \frac{3/2}{-\pi} - \frac{\pi}{2} \sqrt{\frac{\pi}{2}} \operatorname{erfc} \left(\sqrt{q} \cdot s_{0}\right) + 2s_{0} \exp(-qs^{2})$

$$\int_{\circ}^{\circ} () = \frac{\pi}{g} - \frac{\pi}{g} \cdot \frac{\pi}{g} \operatorname{erfc} (\sqrt{g} \cdot s_{\circ}) + 2s_{\circ} \exp(-gs_{\circ}^{2})$$
$$= \frac{\pi}{g} \frac{3/2}{[1 - \operatorname{erfc} (\sqrt{g} \cdot s_{\circ})]_{-} \frac{\pi}{g} \cdot 2s_{\circ} \exp(-gs_{\circ}^{2})$$

Since g = B/2 = 1.36 and $s_o = 2/1.542 = 1.30$,

$$\int_{0}^{1} \int_{0}^{1} (1) = 3.51 \text{ erf (1.516)} - 6 \exp(-2.3) = 3.51 \cdot 0.968$$
$$- 6 \cdot 0.1 = 2.80$$

and

 $P(000) = 2.80 \cdot 48(18^2 + 78^2) = 8.565 \cdot 10^5$.

The disagreement between the two results is due chiefly to the fact that the first considers only reflections which were actually recorded whereas the second refers to all reflections. For the practical purpose of Patterson interpretation, the theoretical height of a sharpened peak is therefore given by

 $P_{\text{theo}}(XYZ) = \frac{6.86}{8.56} \ 2.8 \ z_i z_j = \frac{8}{v} \ k \ P_{\text{exp}} + \frac{1}{v} \ F^2(000)$ and

 $P_{exp}(XYZ) = \frac{1}{250} (2.24 z_i z_j - 6843) = 0.009 z_i z_j - 27.4,$ where 27.4 is the floor value. Thus experimental peak heights for single Bi-Bi, Bi-Cl, and Cl-Cl vectors are 27.4, -14.8, and -24.5 respectively.

Discovery of large peaks along the P(002) line section, indicative of atoms having the same x and y coordinates, gave first experimental proof of the presence of a mirror plane in the c direction. It further established a center of symmetry and confirmed the choice Pnnm as the correct space group. Subsequently, Okaya and Pepinsky* reported a negative piezoelectric test for BiCl which does not deny the center of symmetry. The absence of a peak at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ excluded the existence of two-fold and four-fold sets except as listed in Figure 3.

Interpretation of the three-dimensional Patterson proved to be the turning point in the structure determination. All

^{*}Okaya, Y. and Pepinsky, R., Department of Chemistry, Pennsylvania State University, State College, Pennsylvania. Piezoelectric effect of BiCl. Private communication. 1960.

48 Bi positions were located by the same direct approach used for the two-dimensional case. This achievement practically solved the phase problem.

First, a list of all peaks was prepared specifying their position and height. Then, search for eight-fold Bi positions was begun by locating the positions of intraset vectors $0,0,\pm 2z$ in the P(XOZ) Patterson section shown in Figure 6, thereby establishing the allowed values of the z coordinate. Turning to the $P(X_{Z}^{1}Z)$ section in Figure 7, peaks along the $z = \frac{1}{2}$ edge were taken to represent in part the intraset vectors $\frac{1}{2}+2x$, $\frac{1}{2}$, $\frac{1}{2}$ and used to obtain the x coordinates. The matching peaks at $\frac{1}{2}+2x$, $\frac{1}{2}$, $\frac{1}{2}+2z$, which are required by eightfold sets, specified one of the allowed z coordinates. The $P(\frac{1}{2}YZ)$ section shown in Figure 8 served as the source of y coordinates. Here peaks along the $z = \frac{1}{2}$ edge and their counterparts with allowed z values were interpreted to represent the $\frac{1}{2}, \frac{1}{2}+2y, \frac{1}{2}$ and $\frac{1}{2}, \frac{1}{2}+2y, \frac{1}{2}+2z$ intraset vectors, respectively. The intraset screening process was concluded by checking for the presence of $\pm 2x, \pm 2y, 0$ and $\pm 2x, \pm 2y, \pm 2z$ vector peaks corresponding to the proposed combinations.

Search for four-fold sets followed the same general lines although vectors $\frac{1}{2}\pm2x$, $\frac{1}{2}$, $\frac{1}{2}\pm2z$ and $\frac{1}{2}$, $\frac{1}{2}\pm2y$, $\frac{1}{2}\pm2z$, and $\pm2x$, $\pm2y$, $\pm2z$ were not allowed and the number of checks was reduced accordingly. In all cases, care was taken to observe height requirements corresponding to the multiplicities listed for each

Figure 6. Sharpened Patterson section P(XOZ); thick contours are drawn at intervals corresponding to a Bi-Bi vector, thinner contours represent 2/5 of this value

Figure 7. Sharpened Patterson section P(X¹₂Z); thick contours are drawn at intervals corresponding to a Bi-Bi vector, thinner contours represent 2/5 of this value

Figure 8. Sharpened Patterson section P(½YZ); thick contours are drawn at intervals corresponding to a Bi-Bi vector, thinner contours represent 2/5 of this value

vector in Table 2.

The characteristic Patterson ambiguity which was touched upon in dealing with the two-dimensional case was now compounded by the two sign possibilities for the z parameter. The choice of origin was again made arbitrarily by selecting a particular representation for one of the eight-fold sets and adopting this as reference for all the other newly-found sets.

In the second stage of interpretation, the Bi positions were further screened by inspection of the respective interset vectors which are listed in general form in Table 3. This criterion soon demonstrated its usefulness by proving that one of the three eight-fold Bi positions just acquired was not consistent with the other two. Eventually, two eight-fold and six four-fold sets were located for a total of 40 Bi positions.

The last eight positions played "hard to get" and a special ruse was devised to flush them out. It was reasoned that since there was good evidence for widespread Bi-Bi bonding, at least one atom of the new set or sets would generate a vector about 3 Å long with the cooperation of one other Bi atom. Close examination of all peaks at the indicated distance from the origin eventually led to the location of the final eight-fold set. All nine independent position were refined by hand to give the best possible over-all agreement with the position of Patterson peaks. Results are listed in

Table 4.

Calculation of Structure Factors

Structure factors are defined by the general expression:

$$F(hkl) = \sum_{r} f_{r}(hkl) \exp 2\pi i (hx_{r} + ky_{r} + lz_{r})$$

$$= \sum_{r} f_{r}(hkl) \cos 2\pi (hx_{r} + ky_{r} + lz_{r}) + i \sin 2\pi (hx_{r} + ky_{r} + lz_{r})$$

$$= \mathbf{A}^{i} + \mathbf{i} \mathbf{B}^{i}$$

where f_r is the scattering factor and x_r , y_r , z_r , the coordinates of atom r. Since the structure has a center of symmetry, F(hkl) = F(hkl), A' + iB' = A'-iB', B' = 0 and the above relation reduces to

 $F(hkl) = \sum_{r} f_{r}(hkl) \cos 2 \pi (hx_{r} + ky_{r} + lz_{r})$ Let A = $\sum_{s} \cos 2\pi (hx_{s} + ky_{s} + lz_{s})$ where the summation applies to equivalent positions in the unit cell only. Then, substituting the general eight-fold positions from Figure 3, A = 2 cos $2\pi (hx + ky + lz) + 2 \cos 2\pi (-hx - ky + lz)$ $+ 2 \cos 2\pi (hx - ky - lz + \frac{h + k + l}{2})$ $+ 2 \cos 2\pi (-hx + ky - lz - \frac{h + k + l}{2})$

which eventually reduces to

No. of atom	x	Positions Y	Z	
I	.047	.222	.199	
II	.199	.157	.195	
III	.412	.457	0	
IV	.096	.072	0	
v	.071	.399	0	
VI	.414	.099	0	
VII	.357	.189	1 ₂	
VIII	.237	.330	0	
IX	.152	.342	.277	

Table 4. Bi positions from Patterson analysis

 $A = \begin{cases} 8 \cos 2\pi hx \cos 2\pi ky \cos 2\pi lz & \text{for } h + k + l = 2n \\ -8 \sin 2\pi hx \sin 2\pi ky \cos 2\pi lz & \text{for } h + k + l = 2n + 1 \end{cases}$ for eight-fold sets and half this quantity for four-fold sets. Thus, in its operational form, the structure factor is related to the atomic scattering factors by the equation

$$F(hkl) = \sum_{t} f_{t}(hkl) \cdot A_{t}(hkl) =$$

 $\begin{cases} 8 \sum_{t} f_{t}(hkl) \cos 2\pi hx_{t} \cos 2\pi ky_{t} \cos 2\pi lz_{t} \\ for h + k + l = 2n \\ -8 \sum_{t} f_{t}(hkl) \sin 2\pi hx_{t} \sin 2\pi ky_{t} \cos 2\pi lz_{t} \\ for h + k + l = 2n + 1 \end{cases}$

where the summation applies only to independent atoms in the unit cell.

Atomic scattering factors for Bi⁺ and Cl⁻ were obtained from Ibers^{*}. The Bi⁺ factors were based on the Thomas-Fermi-Dirac treatment and came from unpublished work by Thomas, King, and Umeda. The scattering factors for Cl⁻ were derived by Boys from an earlier paper by Boys and Price.

Before their introduction into structural calculations during the INCOR-IM computation stage, the Bi⁺ scattering factors were corrected for anomalous dispersion (Templeton, 1955). Anomalous dispersion of x-ray radiation is due in part to the reduced scattering power of the shielded, inner electrons and, in part, to the interaction of the incident radiation with the characteristic frequency of the scattering electrons. The corrected scattering factor is related to the original scattering factor, f_o and to the real and imaginary corrections, $\Delta f'$ and $\Delta f''$ by the equation

 $f = f_o + \Delta f' + i \Delta f''$.

Because of the difficulty inherent in handling the imaginary correction it is customary to calculate the absolute magnitude of the corrected scattering factor according to the equation

Ibers, J. H., Shell Development Company, Emeryville, California. Form factors for Bi, Bi⁺, and Cl⁻. Private communication. 1959.

$$f = \sqrt{(f_{\circ} + \Delta f')^2 + (\Delta f'')^2} \cong f_{\circ} + \Delta f' + \frac{1}{2} \frac{(\Delta f'')^2}{f_{\circ} + \Delta f'}$$

The values of $\Delta f'$ and $\Delta f''$ reported by Dauben and Templeton (1955) for Bi atoms and the Cu K α radiation are -5 and 9, respectively. The anomalous dispersion correction was ultimately applied by subtracting 5 from scattering factors at all angles. It was felt that the uncertainty in the charge of the Bi species and the controversy surrounding the anomalous dispersion theory did not warrant the inconvenience of computing the relatively small, second correction term. The correction for Cl atoms is quite negligible and was omitted.

The actual computation of structure factors was performed on the I.B.M. 650 computer using the LS-IIM2 least squares program, and expanded version of LS-II (Senko <u>et al.</u>, 1957), which was modified to calculate structure factors only. This modification is designed to reduce the computing time by omitting certain portions of the least squares calculations. Atomic parameters from the three-dimensional Patterson were fed into the program along with the 1938 observed reflections, the scattering factors, the absolute over-all scale factor, and the average temperature factor. The output included observed and calculated structure factors and, for each layer, optimum scale factors, and R₃ residuals. A list of the ob-

served and calculated structure factors for the final structure is given in Appendix B.

Electron Density Maps

With most structure factor signs correctly assigned on the basis of the strongly-diffracting Bi atoms, attention was turned to the computation of electron density maps and the search for Cl positions.

The general expression for the electron density in a crystal is

$$\rho(\mathbf{X}\mathbf{Y}\mathbf{Z}) = \frac{1}{\mathbf{V}} \sum_{\mathbf{\Sigma}} \sum_{\mathbf{\Sigma}} \sum_{\mathbf{F}} \mathbf{F}(\mathbf{h}\mathbf{k}\mathbf{l}) \exp\left[-2\pi \mathbf{i}(\mathbf{h}\mathbf{X} + \mathbf{h}\mathbf{Y} + \mathbf{l}\mathbf{Z})\right]$$

h k $\mathbf{l} = -\infty$

where X, Y, and Z indicate grid points rather than atomic coordinates. As with the Patterson function, the expression for centrosymmetric structures reduces to

$$\rho(\mathbf{XYZ}) = \frac{8}{\mathbf{v}} \sum_{\substack{k \in \mathbf{v} \\ h \in \mathbf{k}}} \sum_{\substack{\ell=0 \\ k \notin \mathbf{l}=0}}^{\infty} \mathbf{F}(\mathbf{h}\mathbf{k}\mathbf{l}) \cos 2\pi \mathbf{h}\mathbf{X} \cos 2\pi \mathbf{k}\mathbf{Y} \cos 2\pi \mathbf{l}\mathbf{Z}$$
for $\mathbf{h} + \mathbf{k} + \mathbf{l} = 2\mathbf{n}$
$$-\frac{8}{\mathbf{v}} \sum_{\substack{k \in \mathbf{v} \\ h \in \mathbf{k}}} \sum_{\substack{\ell=0 \\ k \notin \mathbf{l}=0}}^{\infty} \mathbf{F}(\mathbf{h}\mathbf{k}\mathbf{l}) \sin 2\pi \mathbf{h}\mathbf{X} \sin 2\pi \mathbf{k}\mathbf{Y} \cos 2\pi \mathbf{l}\mathbf{Z}$$
for $\mathbf{h} + \mathbf{k} + \mathbf{l} = 2\mathbf{n} + 1$

or, more specifically, to

$$\rho(\mathbf{XYZ}) = \frac{1}{\mathbf{V}} \mathbf{F}(000) + \frac{2}{\mathbf{V}} \begin{bmatrix} \Sigma \mathbf{F}(h00) \cos 2\pi h\mathbf{X} + \Sigma \mathbf{F}(0k0)\cos 2\pi k\mathbf{Y} \\ h \end{bmatrix} + \frac{\Sigma \mathbf{F}(001) \cos 2\pi \mathbf{IZ} + \frac{4}{\mathbf{V}} \begin{bmatrix} \Sigma \Sigma \mathbf{F}(hk0)\cos 2\pi h\mathbf{X}\cos 2\pi k\mathbf{Y} \\ h \end{bmatrix} + \frac{\Sigma \Sigma \mathbf{F}(h01)\cos 2\pi h\mathbf{X}\cos 2\pi \mathbf{IZ} + \frac{4}{\mathbf{V}} \begin{bmatrix} \Sigma \Sigma \mathbf{F}(hk0)\cos 2\pi h\mathbf{X}\cos 2\pi k\mathbf{Y} \\ h \end{bmatrix} + \frac{\Sigma \Sigma \mathbf{F}(h01)\cos 2\pi h\mathbf{X}\cos 2\pi \mathbf{IZ} \end{bmatrix} + \frac{4}{\mathbf{V}} \begin{bmatrix} \Sigma \Sigma \mathbf{F}(hk0)\cos 2\pi h\mathbf{X}\cos 2\pi k\mathbf{Y} \\ h \end{bmatrix}$$

$$+ \sum_{h \in I} \sum_{l} \sum_{h \in I} \sum_{h \in I} \sum_{h \in I} \sum_{h \in I} \sum_{l} \sum_{h \in I} \sum_{h \in$$

for h + k + l = 2n + 1

Structure factors for special reflections were divided by their appropriate multiplicity factors in accordance with the above relations and the summing codes specifying the evenness or oddness of indices and the form of the electron density expression were supplied for each reflection. All unobserved reflections and those with $F_0 \gg F_c$ were excluded. The summation was performed on an 1/80 x 1/80 x 1/40 grid with the aid of the I.B.M. 650 computer and the TDF-2 program. Results were again compiled on the I.B.M. 407 tabulator equipped with the special wiring panel. Contours were plotted in the conventional manner. Beside the nine original Bi

positions, 21 other peaks appeared. These are all listed in Table 5.

No. of atom	x	Positions Y	2
x	0	0	. 290
I	.045	.222	.196
	.045	.224	.290
XI	.045	.425	12
v	.071	.399	0
	.072	.398	.232
IV	.095	.070	0
	.095	.069	.232
XII	.111	.132	2
XIII	.262	.288	2
VIV	. 290	.054	2
xv	.314	.017	0
XVI	.334	.210	.192
XVII	.334	.443	. 209
	.354	.193	.266
VII	.358	.191	12
	.380	.272	0
	.409	.459	.232

Table 5. Atomic positions from Fourier analysis

Interpretation of all 21 peaks as indicative of Cl positions would have resulted in a total of 128 Cl atoms per unit cell in drastic violation of Corbett's chemical analysis. Furthermore, some of the alleged locations were closer to Bi atoms than was allowed by legitimate bond distances. Several devices, including least squares cycles on very limited samples and two-dimensional difference Fourier projections, were used in a vain effort to cope with this excess. Finally. it became evident that more fundamental measures were called Some of the extra peaks were thought to have been confor. tributed by reinforced ripples caused by the series termination effects of nearby Bi atoms. A three-dimensional difference Fourier which is free of this defect was expected to save the day.

The difference Fourier, more properly known as the error synthesis, provides a direct portrayal of the discrepancy between the structure represented by the observed intensities and the postulated model. Strongly negative regions in the contour maps indicate that too much scattering matter has been assumed there, while positive regions indicate that too little matter has been assigned. A steep negative gradient at an assumed atomic position implies that the atom is slightly out of place and should be moved toward the nearest positive area. The error synthesis is computed in the same manner as the more conventional Fourier synthesis except that

the signed differences F_O - F_C are used as Fourier coefficients, rather than the observed structure factors with calculated signs.

In order to render the results more meaningful, the original Bi positions and the corresponding temperature factors were partially refined by running 250 reflections, selected more or less at random, through two cycles of the LS-IIM2, least squares program. The results, listed in Table 6, were then used to compute structure factors for the difference Fourier. Contrary to past practice, all operations preliminary to the summation were handled on the I.B.M. 650 computer by means of the new TDF-2 COEFFICIENT program (Stucky, 1960). These operations comprised the elimination of reflections which were unobserved or smaller than a given minimum and reflections with $F_0/F_c > 3$. They also included the division of special reflections by their respective multiplicity factors, the provision of the proper electron density form and summation codes, and the selection of the signed differences F_O-F_C as Fourier coefficients. The summation was carried out in the conventional manner on an 1/80 x 1/80 x 1/40 grid. The output was tabulated and printed directly on a grid-form from which ll positive and nine negative peaks were read off by inspection. These are reported in Table 7.

The positive peaks, interpreted as Cl positions,

Atom no.		Positi	on	В	Layer no.	K	R ₃
I	.0463	.2234	.1956	2.02	0	12.68	.0520
II	.1992	.1552	.1870	2.19	1	11.68	.0843
III	.4100	.4570	0	1.44	2	13.74	.0803
IV	.0980	.0698	0	2.08	3	11.50	.0481
v	.0709	.3970	0	2.50	4	10.67	.1173
VI	.4125	.1004	0	2.61	5	12.52	.0579
VII	.3579	.1897	łz	1.58	all		.0657
VIII	.2373	.3284	0	2.01	all (R	1)	.2442
IX	.1534	.3431	.2710				

Table 6. Bi parameters refined by LS-IIM2

Table 7. Atomic positions from three-dimensional difference Fourier

Atom no.		Positio	on	Atom no.		Position	n	<u></u>
I	.048	.222	.190	XI	.048	.419	 1 ₂	
II	.199	.155	.187	XII	.109	.130	łz	
III	.411	.456	0	XIII	.261	.286	ł	
IV	.099	.071	0	XIV	.291	.054	łz	
v	.071	.397	0	xv	.316	.015	0	
VI	.414	.102	0	XVI	.334	.216	.191	
VII	.357	.194	12	XVII	.333	.441	.209	
VIII	.240	.330	0	XVIII	.433	.329	12	
IX	.152	.341	.269	XIX	.445	.085	.296	
X	0	0	.290	XX	.466	.280	0	

generated 56 Cl atoms per unit cell, eight more than the number of Bi atoms. These peaks were all part of the group evolved from the three-dimensional Fourier synthesis but their defiance of the 1:1 stoichiometry was less brazen and almost tolerable. The negative peaks were indicative only of anisotropic thermal motion or minor positional shifts for certain Bi atoms.

A drawing of the unit cell, complete with the locations of all atoms found thus far, presented an arrangement which was very plausible, though admittedly unorthodox. Agreement between observed and calculated structure factors was very good for this stage of structure determination and the Bi-Bi vectors checked well with Patterson peaks. It was therefore felt that this model was essentially correct and that the time had come to proclaim victory of mind over matter and to settle down to the lesser tasks of refining the atomic coordinates and temperature factors, calculating interatomic distances and angles, and exercising every legitimate effort to relieve the structure of eight embarrassing Cl atoms.

STRUCTURE REFINEMENT AND FUNCTIONAL ANALYSIS

The process of structure refinement was assigned the dual purpose of pinpointing the atomic coordinates in order that the type of species formed by successive bond ruptures could be identified correctly and of assessing the general accuracy of the proposed model including the eight uncooperative Cl atoms. The functional analysis computation provided bond distances and angles along with their standard deviations.

Refinement of Structure

The structure was refined by the method of least squares. The advantages of this approach lie in the elimination of the series termination error and the provision of a means to regulate the influence of a reflection in such a manner that its contribution be commensurate with the accuracy of the original intensity measurement. The theory of error predicts that, if the errors of observed structure factors follow the Gaussian distribution, then the best atomic parameters will be those which result in the minimization of the residual

$$R = \sum_{i} \left[\sqrt{w_{i}} \left(\left| F_{o} \right| - \left| F_{c} \right| \right)_{i} \right]^{2},$$

where w is a weighting factor. This is the fundamental concept of least squares refinement.

The two programs available for least squares computations

were the LS-IIM2, used previously for calculation of structure factors, and a program by Busing and Levy (1959a) written for the I.B.M. 704 computer. Due to the space and speed limitations of the I.B.M. 650, the LS-IIM2 program solves the system of normal equations on the basis of a diagonal approximation to the full matrix. It was estimated that the Busing and Levy program would be three times more effective and 20 times faster than the "650" program. Five least squares cycles with isotropic temperature factors were run on the I.B.M. 704 computer at the Midwest Universities Research Association in Madison, Wisconsin. The structure refined very satisfactorily lowering the residual

$$R_{1} = \frac{\Sigma ||F_{0}| - |F_{c}||}{\Sigma ||F_{0}||}$$

from an initial value of about 0.26 to 0.156. The output of cycle 5 is given in Table 8. Figure 9 shows a drawing of the complete structure, projected on the (001) plane.

Throughout the refinement no grounds appeared for dismissing any of the Cl positions. As a further check of their validity, a three-dimensional difference Fourier was computed on the basis of the refined parameters following the operational procedure described previously. The lack of negative peaks at the assigned Cl positions confirmed their authenticity and precluded the possibility of disordered Cl atoms.

Table 8. Atomic parameters after final refinement

Atom no.			Posi	tions			B
I	.0459	<u>+</u> .0002	.2229	<u>+</u> .0003	.1876	<u>+</u> .0007	3.25 <u>+</u> .07
II	.2002	<u>+</u> .0002	.1544	<u>+</u> .0002	.1815	<u>+</u> .0006	2.96 <u>+</u> .07
III	.4101	<u>+</u> .0002	.4550	<u>+</u> .0003	0		2.07 <u>+</u> .07
IV	.0984	<u>+</u> .0002	.0692	<u>+</u> .0003	0		$2.52 \pm .07$
v	.0723	<u>+</u> .0003	.3982	<u>+</u> .0004	0		3.70 <u>+</u> .10
VI	.4139	<u>+</u> .0002	.1009	<u>+</u> .0004	0		3.39 <u>+</u> .10
VII	.3578	<u>+</u> .0002	.1930	<u>+</u> .0002	7		1.75 <u>+</u> .06
VIII	.2390	<u>+</u> .0002	.3296	<u>+</u> .0003	0		2.25 <u>+</u> .07
IX	.1525	<u>+</u> .0002	.3425	<u>+</u> .0003	.2669	<u>+</u> .0007	3.43 <u>+</u> .08
x	0		0		.288	<u>+</u> .005	2.3 <u>+</u> .4
XI	.052	<u>+</u> .001	.418	<u>+</u> .002	12		3.1 <u>+</u> .5
XII	.109	<u>+</u> .001	.126	<u>+</u> .002	12		2.6 \pm .4
XIII	.264	<u>+</u> .002	.291	<u>+</u> .003	5		5.0 <u>+</u> .8
XIV	.290	<u>+</u> .001	.044	<u>+</u> .002	1/2		3.6 <u>+</u> .5
XV	.315	<u>+</u> .001	.010	<u>+</u> .002	0		3.5 <u>+</u> .5
XVI	.338	<u>+</u> .001	.216	<u>+</u> .002	.194	<u>+</u> .004	3.4 <u>+</u> .4-
XVII	.332	<u>+</u> .001	.449	<u>+</u> .002	.216	<u>+</u> .004	3.4 <u>+</u> .4
XVIII	.433	<u>+</u> .001	.337	<u>+</u> .001	1 <u>2</u>		1.8 <u>+</u> .3
XIX	.445	<u>+</u> .001	.086	<u>+</u> .002	.302	<u>+</u> .005	4.5 <u>+</u> .5
xx	.466	<u>+</u> .001	.274	<u>+.001</u>	0		$1.2 \pm .3$
κ ₀ = κ ₁ =	12.72, 12.00,	к ₂ = к ₃ =	13.50, 12.34,	$K_4 = 1$ $K_5 = 1$.2.71, .3.20,	$R_3 = R_1 =$.187 .156

Figure 9. Structure of BiCl projected onto the (001) plane

_ ·

-

.

- ·

_

Finally, a two-dimensional difference Fourier projection onto the (001) plane, based on the refined Bi parameters alone, produced Cl peaks with the expected height ratios. This served to dispel once again the disorder specter and, even more important, to confirm the presence of eight-fold Cl positions.

The three-dimensional difference Fourier allowed a glance at the anisotropic thermal motion of Bi atoms. Figure 10 shows the positions of anisotropic peaks in relation to Bi atoms. Relative peak heights are given in parentheses; the average height of a Bi peak would be about 450 on the same scale.

Weighting of Intensities

The weighting of individual reflections has been discussed briefly by Lipson and Cochran (1957, pp. 281 and 282). The weighting factor is inversely proportional to the square of an estimated standard deviation of the observed intensity, $\underline{i} \cdot \underline{e} \cdot , w = 1/\sigma^2 (I_0)$. The underlying concept is that the contribution of each reflection to the residual be commensurate with the accuracy assigned to the original observation.

The most valid criterion for the accuracy of an observed intensity is the number of films which contribute to its experimental evaluation. In addition, it is customary to penalize very weak reflections because of their sensitivity

Figure 10. Anisotropic thermal motion of Bi atoms

to minute variations in the film background. For each set of Weissenberg intensities there exists a quantity I_m , the lowest observable intensity, and a quantity I_h , the midpoint of the best judged range. I_b is often equal to 16 I_m .

Reflections with $I_o \ge I_b$ fell generally within the judgeable range on the maximum number of films (3). Their relative error was therefore assumed constant and estimated at 10% on the basis of the observed precision. Mathematically this condition is expressed by

 $\frac{\sigma(I_0)}{I_0} = 0.1$ For reflections with $I_0 \leq I_b$, the relative error should rise gently at first for decreasing intensities, as the number of contributing films drops to two, then, more rapidly, as only one film becomes available and background variations gain in importance. The relation

$$\frac{\sigma(I_0)}{I_0} = 0.1 \left(\frac{I_b}{I_0}\right)^{3/4}$$

was found to satisfy the statistical formula for the change in standard deviation with decreasing number of observations and to coincide with a reasonable estimate for the error of I_.

The contribution of errors in the Lorentz, polarization, and absorption corrections to the standard deviations of corrected intensities was calculated by means of the formula for the propagation of error. If

$$I_{corr} = I_{uncorr} \cdot \chi_{LPA}$$

where χ_{LPA} is the product of the Lorentz, polarization, and absorption correction, then

$$(\mathbf{I}_{corr}) = \left\{ \sigma^{2}(\mathbf{x}) \left[\frac{\partial (\mathbf{I}_{corr})}{\partial \mathbf{x}} \right]^{2} + \sigma^{2} (\mathbf{I}_{uncorr}) \left[\frac{\partial (\mathbf{I}_{corr})}{\partial (\mathbf{I}_{uncorr})} \right]^{2} \right\}^{\frac{1}{2}}$$
$$= \left\{ \sigma^{2}(\mathbf{x}) \mathbf{I}_{uncorr}^{2} + \sigma^{2} (\mathbf{I}_{uncorr}) \cdot \mathbf{x}^{2} \right\}^{\frac{1}{2}}$$

Assuming only experimental error and neglecting any inaccuracies inherent in the theoretical treatment of these corrections, it was found that

$$\left[\frac{\sigma(\mathbf{X})}{\mathbf{X}}\right]^2 < < \left[\frac{\sigma(\mathbf{I}_{uncorr})}{\mathbf{I}_{uncorr}}\right]^2$$

This reduced the above expression to

$$\sigma(\mathbf{I}_{corr}) \cong \sigma(\mathbf{I}_{uncorr}) \cdot \mathbf{X}$$

or

$$\frac{\sigma(I_{corr})}{I_{corr}} \stackrel{\simeq}{=} \frac{\sigma(I_{uncorr})}{I_{corr}} \cdot \chi = \frac{\sigma(I_{uncorr})}{I_{uncorr}}$$

The Busing and Levy least squares program requires for each reflection the standard deviation of the structure factor. It can be shown that this quantity is related to the standard deviation of the observed intensity by the equation

$$\sigma(\mathbf{F}_{O}) = \frac{1}{2} \frac{\sigma(\mathbf{I}_{COTT})}{\mathbf{I}_{COTT}} \quad \mathbf{F}_{O} \stackrel{\sim}{=} \frac{1}{2} \frac{\sigma(\mathbf{I}_{O})}{\mathbf{I}_{O}} \quad \mathbf{F}_{O}$$

Substituting in the earlier expressions for $\sigma(I_0)$, the working formulation of $\sigma(F_0)$ becomes

$$\sigma(\mathbf{F}_{o}) = \begin{cases} .05 \ \mathbf{F}_{o} & \text{for } \mathbf{I}_{o} \ge \mathbf{I}_{b} \\ .05 \left(\frac{\mathbf{I}_{b}}{\mathbf{I}_{o}}\right)^{3/4} \mathbf{F}_{o} & \text{for } \mathbf{I}_{o} < \mathbf{I}_{b} \end{cases}$$

A new program, identified as "STD", was written for the I.B.M. 650 computer for the purpose of computing standard deviations of structure factors on the basis of uncorrected intensities. A detailed writeup will be found in Appendix A.

Figure 11 compares a graphic representation of this treatment with corresponding plots based on a scheme by Williams and Fitzwater as incorporated in the LS-IIM2 program. The major faults of the latter approach lie in its failure to base calculation of standard deviations on the uncorrected intensities and in the inordinately sharp rise of $\sigma(F_0)$ for weak reflections. This causes incorrect assignment of error estimates and the virtual elimination of contributions from very weak reflections.

Neither treatment considered the weighting of unobserved reflections. A detailed discussion of this problem has been presented by Hamilton (1955).

Functional Analysis

Interatomic distances and angles, along with their respective standard deviations, were computed by Dr. Lawrence Dahl at M.U.R.A. with the aid of the Crystallographic Function and Error program (Busing and Levy, 1959b). These are listed in Tables 9 and 10. Bonding distances are indicated in Figure 9.

Table 9.	interatomic distance	es in A	
Atom		Atom	
No.	Distance	No.	Distance
I-I	3.286 + .012	VII-XIII	2.617 + .050
I-JT	$3.704 \pm .005$	VII-XIV	2.730 + .034
T-TV	$3.084 \pm .006$	VII-XVI	$2.743 \pm .037$
T-V	$3.166 \pm .007$	VII-XVIII	$2.775 \pm .021$
T-TY	$3 125 \pm 006$	VII-XIX	$3 100 \pm 037$
τ-¥	$3.625 \pm .011$	******	·····
T-YTT	$3 424 \pm 017$	VIII-IX	3.078 + .006
T ~X XXIII	$3 215 \pm 018$	VIII-XIV	3.296 + .034
I-VIV	$3,700 \pm 032$	VIII-XVI	$3.311 \pm .029$
T-VTV T-VTV	$3.700 \pm .032$ $3.207 \pm .011$	VIII-XVII	$3.378 \pm .028$
T-XX	$3.297 \pm .011$	·	3.370 1 .020
II-II	3.181 + .011	IX-XI	3.297 <u>+</u> .024
II-IV	3.111 + .006	IX-XII	3.977 <u>+</u> .023
II-VIII	3.205 + .005	IX-XIII	3.373 <u>+</u> .040
	3.126 + .006		—
II-XII	3.525 + .017	X-XII	$3.64 \pm .03$
II-XIII	3.763 + .034	X-XVII	3.94 <u>+</u> .02
II-XIV	3.850 + .024	X-XVIII	3.84 <u>+</u> .03
II-XV	3.771 + .031	X-XX	3.95 <u>+</u> .02
TT-XVT	$3,305 \pm .025$		
TT-XVTT	$3.306 \pm .025$	XI-XI	$3.43 \pm .06$
anta anta anta 7 de alta		XI-XV	3.38 <u>+</u> .05
III-X	2.860 + .028	XI-XIX	3.62 <u>+</u> .05
III-XII	2.605 + .027	XI-XIX	3.67 <u>+</u> .05
III-XVII	2.606 + .032	XI-XX	3.48 <u>+</u> .03
III-XX	3.017 + .018		
		XII-XVII	$3.54 \pm .04$
IV-X	3.553 + .030	XII-XX	3.61 <u>+</u> .03
IV-XVII	3.470 + .031	¥TTT_¥117	3 76 + 06
IV-XVIII	3.557 + .021	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$3.70 \pm .00$
	-	VIII-VUII	$3.30 \pm .03$
V-VIII	$3.979 \pm .007$	^^VIII VIII_VVIII	$3.73 \pm .03$
V-IX	3.096 <u>+</u> .007	VIII-VVIII	3.93 <u>+</u> .05
V-XIV	$3.859 \pm .035$	XIV-XVI	3.89 + .04
V-XIX	3.418 <u>+</u> .037	XIV-XVII	3.68 + .04
V-XIX	3.337 <u>+</u> .036	SET 1 1117	
17T-YT	3 185 ± 031	XV-XVI	3.38 <u>+</u> .04
<u>11-71</u> 11-11	2 970 + 031	XVI-XVI	3.40 + .08
	$2.870 \pm .031$	XVI-XVIT	3.50 ± 03
VI-XV	$2.000 \pm .035$	XVT-XVTTT	$3.91 \pm .03$
VT-XVT		XVI_YTY	$3 29 \pm 04$
VI-XIX	$2.753 \pm .046$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VI-XX	2.865 + .018	VAT-YY	3.33 <u>+</u> .03

-

-

Table 9. Interatomic distances in Å

Atom No.	Distance	Atom No.	Distance
XVII-XVII XVII-XVIII	$3.78 \pm .07$ $3.79 \pm .03$	XIX-XIX XIX-XIX XIX-XX	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 10. Interatomic angles; central atom is vertex

Atom		Atom	
No.	Angle	No.	Angle
I - I -V	58.7 + .1	XV-VI -XX	145.8 + .9
II - I -V	92.3 + .2	XIX-VI -XIX	148.5 + 1.4
I -II -VIII	92.7 + .1	XIII-VII-XIV	89.3 + 1.3
X -III-X	80.7 + 1.3	XIII-VII-XVI	77.7 + .6
X -III-XII	83.5 + .5	XIII-VII-XVIII	94.2 + 1.2
X -III-XVII	92.2 + .9	XIV-VII-XVIII	176.5 + .8
XII-III-XVII	85.4 + .7	XVI-VII-XVI	155.4 + 1.1
XVII-III-XVII	92.8 + 1.3	II-VIII-V	86.8 + .1
I -IV -II	73.4 + .1	I-IV -VIII	107.7 + .2
I -IV -II	105.1 + .2	II-IX -V	105.9 + .2
I -V -I	37.9 + .1	V-IX -VIII	80.2 + .2
I -V -VIII	88.3 + .2	XVI-XIV-XVI	87.2 + 1.2
XI -VI -XV	75.2 + 1.0	XIV-XVI-XVIII	89.8 + .9
XI -VI -XIX	81.4 + .7	XVI-XVIII-XVI	86.5 + 1.0
XI -VI -XX	139.0 + .7		<u> </u>
	-		

Figure 11. Standard deviation plots; full circles indicate the new approach

DISCUSSION

Interpretation of Structure

The unit cell of bismuth monochloride contains four Bi₉ polyhedra and an array of Bi and Cl atoms which can be catalogued as eight BiCl₅ and two Bi₂Cl₈ units. The Bi₉ polyhedron assumes the form of a distorted trigonal prism with atoms Bi_{IV} and Bi_{IX} (2) projecting from its faces. In BiCl₅ the Cl atoms form a distorted tetragonal pyramid about Bi; in Bi₂Cl₈ two such pyramids share an edge. Weak Bi-Cl interactions form the only links between molecules. Those shorter than 3.5 Å are indicated by dashed lines in Figure 9.

Each atom in the Bi_9 unit has four nearest neighbors at 3.08 Å to 3.29 Å. The shorter distance is the same as that between Bi and its three nearest neighbors in solid bismuth, the longer is comparable to the 3.32 Å distance in liquid bismuth. The elongation of Bi-Bi bonds and the concomitant distortion of the trigonal prism is induced by intermolecular Bi-Cl interactions whose average length of 3.3 Å is very close to the sum of the estimated Bi^+ and Cl^- ionic radii.

The effective radius, r, of an atom in a crystal lattice can be calculated by Pauling's (Pauling and Pauling, 1956) formula

$$r = r_1 - 0.300 \log_{10} \frac{v}{n}$$

from its simple covalent radius, r_1 , its valence, v, and the

number of bonds it forms, n. For a Bi atom bonded to four neighbors, $r_1 = 1.510$, n = 4 and the simplified expression becomes

$$r = 1.510 - 0.300 \log_{10} \frac{v}{4}$$
.

On this basis, a valence of 2 corresponds to an effective bond length of 3.20 Å, a valence of 3, to 3.09 Å, and a valence of 4, to the single covalent bond length of 3.02 Å. Since the distortion of the trigonal prism involves considerable stretching of most bonds and only slight compression of a few, the valence of 2 is incompatible with the average experimental bond length of 3.14 Å. The two other values are acceptable at this stage as they call for bonds which are either equal to or smaller than the shortest experimental distance, 3.08 Å.

The valence of 3 would place no charge on the Bi atom; the three bonding p electrons could distribute themselves among four metallic orbitals, each equivalent to 3/4 of an atomic orbital in accordance with Pauling's findings, and an inert s pair would be left to take up the void opposite from the center of the Bi₉ unit. However, such a disposition is incompatible with the diamagnetic character of the crystals as it calls for an odd number of electrons in the polyhedron. The valence of 4 requires a +1 charge on each Bi atom and, presumably, entails the distribution of two s and two p electrons among four highly distorted sp³ orbitals. The happiest solution, however, stems from a molecular orbital approach

which can justify an intermediate valence and hence an intermediate net charge. Under these circumstances the pyramidal molecules can be regarded as $BiCl_5^{=}$ and $Bi_2Cl_8^{=}$ ions containing bismuth in its conventional Bi(III) state and Bi_9 is assigned a charge of +5 to insure charge conservation.

Bi-Cl bond lengths within the pyramidal molecules range between 2.60 and 2.87 \mathring{A} . They are comparable to the Bi-Cl distance of 2.71 Å in BiSCl and BiSeCl but longer than the 2.48 Å distance in gaseous $BiCl_3$. Calculations based on the electronegativities of the two elements assign 25% ionic character to the Bi-Cl bond, but the distance in gaseous BiCl₃ is equal to the sum of covalent radii. The most perplexing aspect of bonding in the $BiCl_5$ and Bi_2Cl_8 ions is the role of the bridging intermolecular links between their Bi and Cl atoms which in this case are only 3.1 Å long. If these are counted along with the regular Bi-Cl bonds, atoms Bi III, Bi_{VI} , and Bi_{VTT} attain a sixfold, sevenfold, and even eightfold coordination. Bonds within the pyramidal ions are considered essentially covalent with some ionic character present. Their stretching is due to the intermolecular interactions but also to packing interference and, in the case of the Bi₂Cl₈⁼ ion, to the sharing of Cl atoms.

Reliability of Model

The consistency of Bi-Bi vectors with the observed Patterson peaks, the agreement between observed and calculated

structure factors, the satisfactory progress of refinement, and the plausibility of the resulting configurations and interatomic distances all serve to insure that the proposed model is essentially correct. The residual

$$R_{1} = \frac{\Sigma ||\mathbf{F}_{0}| - |\mathbf{F}_{c}||}{\Sigma |\mathbf{F}_{0}|},$$

expressing the degree of agreement between observed and calculated structure factors, is most commonly quoted as a measure of accuracy of a model because it is more amenable to numerical treatment than the other criteria. This residual gives a good indication of the progress of refinement but does not in itself constitute an adequate measure of the correctness of a model since all reflections, weak or strong, are assigned equal weight.

According to Lipson and Cochran (1957, p. 147), the only valid basis for the assessment of the correctness (as distinct from accuracy) of a structure lies in the agreement for individual reflections. For reflections which are reasonably strong, and thus reliably estimated, the observed and calculated structure factors should agree to within 40%, most of them being much better than this. A survey of the 55 strongest reflections showed that their structure factors, on the average, agreed within 11% and only two showed a discrepancy higher than 20%.

Several factors must be borne in mind when considering

the 15.6% value of the unweighted residual R_1 calculated by the least squares program. On the negative side of the ledger, this figure takes no account of unobserved reflections. In general, weak reflections showed poorer agreement, as indicated by the slightly higher value (18.7%) of the weighted residual R_3 , so that the inclusion of unobserved reflections should be expected to increase R_1 somewhat. The implication of this fact, borne out by an inspection of positional standard deviations in Table 8, is that the stronger diffracting Bi atoms have been located more reliably than the Cl atoms.

The extenuating circumstances, on the other hand, are more numerous and more consequential. The residual was computed by forcing isotropic temperature factors on the refinement process although Figure 10 indicates considerable thermal anisotropy for Bi atoms. The absorption correction factors differed by as much as 5,000% between reflections, and a slight error in the correction curve would carry very serious consequences. Finally, no allowance was made for secondary extinction simply because no handy correction scheme is yet available. This effect is brought on by the reduction of the intensity of the primary beam incident upon a plane due to reflection from the preceding planes and is expected to be quite important for a crystal containing strongly diffracting bismuth.

Although some doubt remains as to the exact location of

the Cl atoms, special precautions, described in the refinement section, were taken to verify their number. In addition, the density of 6.56 g/cc calculated for 48 Bi and 56 Cl atoms compares much better with the 6.54 g/cc experimental value than the 6.41 g/cc figure calculated on the basis of 48 Bi and 48 Cl atoms per unit cell.

Conclusions

The establishment of atomic configuration in solid BiCl provides a foundation upon which a framework of speculation can be constructed concerning the nature of species formed when bismuth metal or BiCl is dissolved in liquid BiCl₃. As the vigor of disruptive forces induced by thermal motion increases with rising temperature, a process of structural breakdown and interaction of the fragments with the BiCl₂ solvent can be envisioned. At the melting point the intermolecular interactions are destroyed and the crystal structure collapses. There is partial disproportionation of Bi_9^{+5} to Bi metal and Bi ions and partial dissociation of $BiCl_5$ and $Bi_2Cl_8^{=}$. The metal-rich liquid phase contains Bi_9^{+5} and Cl^{-} ions dissolved in the metal, the salt-rich phase is composed of Bi_{α}^{+5} cations and Cl⁻, $BiCl_4^-$, and $BiCl_5^-$ anions in equilibrium with BiCl₃. At higher temperatures, nearly complete breakdown of all molecular species takes place to produce a single liquid phase composed of Bi^{+5} and Cl^{-} ions along with

solvated metallic electrons.

The presence of all these species in $\text{Bi}-\text{BiCl}_3$ solutions, with the exception of Bi_9^{+5} , had been conjectured by researchers at one time or another. Topol <u>et al</u>. (1960) proposed the formation of BiCl_4^- and $\text{BiCl}_5^=$ ions to account for the high cryoscopic number of alkali chlorides dissolved in molten BiCl_3 after detecting K_3BiCl_6 and K_2BiCl_5 in the KCl-BiCl}_3 phase diagram. Subsequent spectroscopic work by Boston and Smith (1960) and concentration cell e.m.f. measurements of $\text{Topol} \underline{\text{et al}}$. (1961) indicated the presence of simple species such as BiCl and (BiCl)} in very dilute solutions or at elevated temperatures and the formation of unidentified polymers at increased concentrations. The presence of Bi_9^{+5} polymers accounts for the high viscosity of the salt-rich phase while the complexity of the BiCl structure explains the marked tendency of concentrated solutions toward supercooling.

From the vantage point of an archeologist who dug for an earthen vase but ends up surveying an ancient hamlet which he has freed from its burden of overlying sand and debris, it becomes apparent that the finished product has outgrown the original scope of the investigation. What was to be a physical tool for prying into chemical secrets became an achievement which stands on its own merits, opens up a Pandora's box of exciting fact and speculation, and echoes the words of Clarence R. Wylie:
". . Bridges stand, and men no longer crawl In two dimensions. And such triumphs stem In no small measure from the power this game, Played with thrice-attenuated shades Of things, has over their originals. How frail the wand, but how profound the spell!"

SUMMARY

Bismuth monochloride separates out as a solid phase when bismuth metal is dissolved in liquid BiCl₃. Its crystals take the form of black diamagnetic needles with a flattened hexagonal cross section. The crystal structure of bismuth monochloride was determined as an aid in the identification of the species formed in the Bi-BiCl₃ system.

The stoichiometric formula of bismuth monochloride was found to be $\operatorname{BiCl}_{1.17}$. The crystals are orthorhombic with lattice constants $a_o = 23.057$, $b_o = 15.040$ Å, $c_o = 8.761$ Å and space group Pnnm. The experimental density of 6.54 g/cc agrees well with the 6.56 g/cc value calculated on the basis of the 48 Bi and 56 Cl atoms per unit cell. Three-dimensional Weissenberg and precession film data were obtained with Cu Ka radiation. The 2500 reflections were judged visually, and corrected for the Lorentz factor, polarization, absorption, and multiplicity.

The structure was determined by the heavy atom technique. Interpretation of a three-dimensional Patterson map located all 48 Bi positions and thus established the phases of the more important reflections. The 56 Cl positions were found through three-dimensional Fourier and difference Fourier maps. Refinement of the structure was carried out by the least squares technique using isotropic temperature factors. All positions refined satisfactorily resulting in a final R₁

value of 0.156.

Each unit cell contains four $\operatorname{Bi}_{9}^{+5}$ cations in the shape of ^{*}distorted trigonal prisms that have a Bi atom projecting from each face. There are also eight BiCl₅⁼ and two Bi₂Cl₈⁼ anions where the Cl atoms assume a distorted tetragonal pyramidal configuration about Bi. The cation has delocalized bonding and a charge of +5 based on the assignment of Bi(III) atoms to the anions. The latter are thought to have conventional Bi-Cl bonds. Intermolecular linkage is provided by weak Bi-Cl interactions which are considerably shorter between anions than between an anion and the cation. They are responsible for the configurational distortions. A mode of structural breakdown with rising temperature is proposed and the species formed by interaction of the fragments with the BiCl₃ solvent are compared with results of previous investigations.

LITERATURE CITED

Atoji, M. 1957. Acta Cryst. 10, 291.

Bond, W. L. 1951. Rev. Sci. Instr. 22, 344.

_____. 1959. Acta Cryst. <u>12</u>, 375.

Boston, C. R. and Smith, G. P. 1960. U. S. Atomic Energy Commission Report ORNL 2988, 9 [Oak Ridge National Lab., Tennessee].

Bradley, A. J. 1935. Proc. Phys. Soc. 47, 879.

Bredig, M. A. 1959. J. Phys. Chem. 63, 978.

Buerger, M. J. 1942. X-ray Crystallography. J. Wiley and Sons, New York.

_____. 1960. Crystal Structure Analysis. J. Wiley and Sons, New York.

- Busing, W. R. and Levy, H. A. 1959a. U. S. Atomic Energy Commission Report ORNL 59-4-37 [Oak Ridge National Lab., Tennessee].
- _____ and _____. 1959b. Ibid. ORNL-59-12-3.

Corbett, J. D. 1958. J. Am. Chem. Soc. 80, 4757.

. 1961. The Solution of Metals in Their Molten Salts. In Sundheim, B. R. and Gruen, D. M., eds. Molten Salts. McGraw-Hill, New York.

_____, von Winbush, S., and Albers, F. C. 1957. J. Am. Chem. Soc. <u>79</u>, 3020.

Cubicciotti, D. 1952. J. Am. Chem. Soc. 74, 1198.

_____. 1960a. J. Chem. Educ. 37, 540.

_____. 1960b. J. Phys. Chem. 64, 791.

_____, Keneshea, F. J., Jr., and Kelley, C. M. 1958. J. Phys. Chem. <u>62</u>, 463.

Darnell, A. J. and Yosim, S. J. 1959. J. Phys. Chem. <u>63</u>, 1813.

Dauben, C. H. and Templeton, D. H. 1955. Acta Cryst. <u>8</u>, 841. Donges, E. 1950. Z. anorg. Chem. 263, 112, 280.

Eggink, B. G. 1908. Z. physik. Chem. 64, 449.

Fitzwater, D. R. 1958. Structures of Some Hydrated Rare Earth Ethylsulfates. Unpublished Ph. D. Thesis. Library, Iowa State University of Science and Technology, Ames, Iowa.

and Williams, D. E. 1959. The TDF-2, Three-dimensional Fourier Program. (Mimeographed) Department of Chemistry, Iowa State University of Science and Technology, Ames, Iowa.

Hamilton, W. C. 1955. Acta Cryst. 8, 185.

- Holecek, O. C. 1953. Physical-Chemical Investigation of the System Bi-BiCl₃. Unpublished M. S. Thesis. Library, University of Southern California, Los Angeles, Cal.
- Jones, M. and Lapworth, A. 1914. J. Chem. Soc. 105, 1804.
- Keneshea, F. J., Jr., and Cubicciotti, D. 1958. J. Phys. Chem. <u>62</u>, 843.
- Levy, H. A., Bredig, M. A., Danford, M. D., and Agron, P. A. 1960. J. Phys. Chem. <u>64</u>, 1959.
- Lipson, H. and Cochran, W. 1957. The Determination of Crystal Structures. G. Bell and Sons, London.
- Mayer, S. W., Yosim, S. J., and Topol, L. E. 1960. J. Phys. Chem. <u>64</u>, 238.
- Patterson, A. L. 1935. Z. Krist. 90, 517.
- Pauling, L. and Pauling P. 1956. Acta Cryst. 9, 127.
- Senko, M. E. and Templeton, D. H. 1957. The LS-II, Least Squares Program. (Mimeographed) Department of Chemistry, University of California, Berkeley, Cal.
- Sillen, L. G. and Edstrand, M. 1942. Z. Krist. 104, 178.
- Skinner, H. A. and Sutton, L. E. 1940. Trans. Far. Soc. <u>36</u>, 681.

- Sokolova, M. A., Urazov, G. G., and Kuznetsov, V. G. 1954. Khim. Redkikh Elementov <u>1</u>, 102.
- Sokolova, T. I. 1952. Izvest. Sektora Fiz.-Khim. Anal. 21, 159. [U. S. Atomic Energy Commission Translation No. 3168].
- Stucky, G. D. and Fitzwater, D. R. 1960. The TDF-2 COEFFI-CIENT Program. (Mimeographed) Department of Chemistry, Iowa State University of Science and Technology, Ames, Iowa.

Templeton, D. H. 1955. Acta Cryst. 8, 842.

- Topol, L. E., Mayer, S. W., and Ransom, L. D. 1960. J. Phys. Chem. 64, 862.
 - _____, Yosim, S. J., and Osteryoung, R. A. 1961. [To be published in J. Phys. Chem. <u>ca</u>. 1961.]

Wilson, A. J. C. 1942. Nature 150, 152.

Wolten, G. M. and Mayer, S. W. 1958. Acta Cryst. 11, 739.

- Yosim, S. J., Darnell, A. J., W. G. Gehman, and Mayer, S. W. 1959. J. Phys. Chem. 63, 230.
- Zalkin, A. and Jones, R. E. 1957. The INCOR-I, Intensity Correction Program. (Mimeographed) Department of Chemistry, University of California, Berkeley, Cal.

ACKNOWLEDGEMENTS

The successful completion of this project constituted a hardy initiation into the complex field of crystallography, especially for a neophyte lacking the benefit of ready access to an organic source of technical information. In fact, the entire venture would today have been but a bad memory were it not for the generosity and inspiration of my mentor and friend, John Corbett. Time after time his keen intuition shattered the barriers of experimental adversities while his trust and gentle manner restored the self-confidence needed to raise me from occasional depths of dejection. I am deeply grateful for having had the privilege of associating with the man whom I admire as a scientist and value as an individual.

For my crystallographic training I am greatly indebted to Masao Atoji whose prodigious command of the subject, painstaking preparation of lectures, and cordial desire to help will long be remembered.

In the last year I came to rely more heavily on Don Williams for clarification of crystallographic mysteries. His willingness to share with me facts and ideas, sometimes grudgingly but always with enviable competence and thoroughness, have earned him my sincere appreciation.

From Bob Fitzwater came much discouragement and adverse criticism but also a great deal of valuable information,

particularly in the computing field. His general assistance and his generosity in connection with the trip to the 1958 A.C.A. convention are gratefully acknowledged.

During the necessarily brief span of professional association with Larry Dahl I have benefited greatly from his advice, interest, and physical assistance. He has earned the esteem and gratitude of all who knew him and I consider myself fortunate to be in that number.

I am indebted to Professor Rundle for the use of crystallographic equipment and for his guidance through the initial stages of this work.

The high standards demanded of the experimental data by the complexity of this structure were met through the keenness and patience of Pat Hutcheson who was charged with the unenviable task of evaluating diffraction intensities.

Finally, I wish to express my sincere gratitude to my many friends and associates at the Ames Laboratory for their stimulating discussions, gracious assistance, and gratifying companionship.

APPENDIX A: COMPUTER PROGRAMS Absorption Correction and Sharpening Program

Introduction

This program applies spherical or cylindrical absorption corrections to observed Weissenberg intensities and structure factors and/or multiplies intensities by an optional sharpening factor. A provision is included for multiplying intensities and structure factors by a constant during either operation.

Description of input cards

Absorption correction deck (15 cards)

/ A*(10), PP/ in fields 1-7.

 A^* is the absorption correction at .01 increments of $\sin^2\Theta$, as described in the discussion section. PP = 50 + p, where p is the power of 10 multiplying $A^*(10)$. These cards must be left out if absorption correction is not desired.

Constant cards

 $/\cos^2 v$ (10), PP/ $\cos v$ (10), PP / K_a (10), PP/

v is defined in the discussion section, K_a is a constant which multiplies the absorption-corrected intensities. This card must be left out if absorption correc-

tion is not desired.

/n₃(10), PP/n₄(10), PP/K_s(10), PP/

 $\pm B'/\lambda^2$ is the artificial temperature factor defined in the discussion section, $\sum_{i} z_i$ is the sum of atomic numbers i for all atoms in the unit cell, n_i is the number of atoms of the i-th type in the unit cell (in the same order as the scattering factors), K_s is a constant which multiplies the sharpened intensities and sets $K_a = 1$ if both are included. This card must be left out if sharpening is not desired.

Data cards

/hkkllaaaa/I₀(7)/ $\sin^2\theta(10)/f_1(6)/f_2(6)/f_3(6)/f_4(6)/$

aaaa = anything, I_0 is the unprocessed intensity, f_{i} is the scattering factor for the atom of type i. These cards have the same format as the INCOR-IM output cards.

Operating instructions

Loading sequence

- 1. ACS Program deck
- 2. Switch card
- 3. Absorption Correction deck (optional)
- 4. Control cards #1 and/or #2
- 5. Data cards

Console settings

Storage entry: 70 1952 9999 (00 0000 1999 if program loaded)

Programmed:	STOP	Display:	PROGRAM
Half cycle:	RUN	Overflow:	SENSE
Control:	RUN	Error:	STOP

Operation

Use FORTRANSIT OBJECT wiring panel.

A machine stop with 0050 or 0051 in address lights indicates error in the format of absorption correction or constant cards.

Computation times are 2.1 sec. per reflection for absorption correction and 2.3 sec. per reflection for the sharpening operation.

Description of output cards

/hhkkllaaaa/ $I_{c}(7)$, $F_{o}(2)/\sin^{2}\Theta(10)/f_{1}$ (6)/ etc.

I_C is the absorption corrected and/or sharpened intensity. These output cards are in the proper format for input to the LS-IIM2 least squares program.

Discussion

Absorption corrections are calculated according to the method developed by Bond (1959). The correction factor A^* , defined as the ratio of the corrected to the observed

intensity, is listed in Bond's paper as a function of μR and $\sin^2 \Theta$. μ is the linear absorption coefficient and R is defined by the relation

$$R = R_0 \sec v$$

where R_0 is the radius of the crystal cylinder and v is the angle between the incident x-ray beam and a plane normal to the cylinder axis. For spherical crystals and for zero layer photographs of cylindrical crystals v = 0, sec v = 1, and $R = R_0$.

For higher layer reflections, the absorption correction factor undergoes the transition

 $A^{*}(\mu R_{0}, \Theta) \longrightarrow \cos \nu \cdot A^{*}(\mu R, \gamma/2).$

 Υ is related to ν and Θ by the expression

 $\cos \frac{\Upsilon}{2} = \frac{\cos \theta}{\cos \nu}$ or $\sin^2 \frac{\Upsilon}{2} = 1 - \frac{1 - \sin^2 \theta}{\cos^2 \nu}$

The program calculates $\sin^2(\gamma/2)$ and selects the corresponding value of A^* by linear interpolation. In the case of spherical crystals, again v = 0 so that $\sin^2(\gamma/2) = \sin^2 \Theta$.

Absorption correction decks are prepared by reading values of A^* from plots of A^* <u>vs</u>. $\sin^2\theta$, at .01 increments of $\sin^2\theta$, between 0.00 and 1.00. A new plot is required for each value of μR . Some judgement must be exercised in choosing the scale of the absorption correction factors in order to obtain the desired number of significant figures in the output.

"Sharpening" of intensities is performed according to the

relation:

$$F_{o}^{2} \text{(sharp)} = \frac{F_{o}^{2}}{\left(\sum_{i} f_{i} / \sum_{i} Z_{i}\right)^{2}} \exp \frac{\pm B^{1} \frac{(\sin \Theta)^{2}}{\lambda^{2}}}{\lambda^{2}}$$

where f_i is the scattering factor and Z_i , the atomic number of the i-th atom and $\pm B^1$ is the artificial temperature factor.

Since the scattering factors decrease as θ increases, both the ratio of sums and the exponential term in the above expression tend to increase the value of intensity at higher angles whenever the artificial temperature factor is positive. The negative temperature factor is often used to diminish the sharpening effect of the ratio of sums. If no other guide is available B¹ may be tentatively adjusted so that the condition

$$s_{o}$$

 $\Sigma \langle F^{2} \rangle = .1 \Sigma z_{i}^{2}$
 s_{o} -.1 (sharp) $\geq .1 \Sigma z_{i}^{2}$

holds, where $S_0 = \frac{\sin \Theta \max}{2}$.

Program listing (in FORTRANSIT language)

0 0 DIMENSION ABCO (101)
0 0 READ, SWC1, SWC2
0 0 IF (SWC1) 1, 2, 1
1 0 READ, ABCO
0 0 READ, CSNU, CNU, CONST
0 0 IF (SWC2) 2, 3, 2

2	0	READ, BOLSQ, SAN, ATK1,
0	1	ATK2, ATK3, ATK4, CONST
3	0	READ, IND, INSFP, ISST
0	1	H, ISCF1, ISCF2, ISCF3,
0	2	ISCF4
0	0	VINT = INSFP*1.E-7
0	0	CINT = VINT
0	0	SSTH = ISSTH*1.E-10
0	0	IF (SWCl) 4, 5, 4
4	0	ASSUP = 1((1SSTH)/
0	1	CSNU)
0	0	JSSUT = ASSUP*1.E2
0	0	VINT = (ABCO(JSSUT + 1)
0	1	-(ASSUP*1.E2 - JSSUT)*
0	2	(ABCO(JSSUT + 1) - ABCO(
0	3	JSSUT + 2)))*CNU * VINT
0	0	CINT = VINT
5	0	IF (SWC2) 7, 8, 7
7	0	SHFC = SAN/(ATK1*ISC
0	1	Fl + ATK2 * ISCF2 + ATK3
0	2	* ISCF3 + ATK4 * ISCF4)
0	0	CINT = SHFC * SHFC * EXPF
0	1	(BOLSQ * SSTH) * VINT
8	0	VINT = CONST * VINT
0	0	STFC = SORTF(VINT)

0 0 CINT = CONST * CINT 0 0 INTM = CINT * 1.E2 0 0 INTP = INTM * 100000 0 0 ISFP = STFC * 1.E2 0 0 INSFP = INTP + ISFP 10 0 PUNCH, IND, INSFP, ISS 0 1 TH, ISCF1, ISCF2, ISCF 0 2 3, ISCF4 0 0 GO TO 3 0 0 END

Standard Deviations Program

Introduction

The STD program computes standard deviations of observed structure factors on the basis of uncorrected film data. The output is easily reproduced into the standard input format of the I.B.M. 704 Crystallographic Least Squares Program (Busing and Levy, 1959).

Description of input cards

Constant card

 $/ I_{\rm b}$ (7) /

I_b is value of the median intensity of the best judged range. It often coincides with 16 times the lowest ob-

servable intensity.

Data cards

/ hhkkllaaaa / I_0 (7) /

I_o is the uncorrected value of the observed intensity, aaaa = anything. These cards have the same format as the INCOR-I (Zalkin and Jones, 1957) data input cards.

/ hhkklaaaa / I_{c} (7), $F_{o}(2)$ / a'a' ··· a' $\frac{8}{9}$ /

 I_c is the corrected value of the observed intensity, F_o is the observed structure factor (= $\sqrt{I_c}$), 8 in col. 30 indicates $I_o \ge I_b$, 9 indicates $I_o < I_b$. Both the INCOR-I and the ACS output cards have the proper input format. These two types of data cards must appear in pairs with matched indices and in the order given. —

Operating instructions

Loading sequence

 STD Program deck, 2. Control card, 3. Data cards
 Console settings

Storage entry: 70 1952 9999 (00 0000 1999 if program deck is already loaded).

Programmed:	STOP	Display:	PROGRAM
Half cycle:	RUN	Overflow:	SENSE
Control:	RUN	Error:	STOP

Operation

Use FORTRANSIT OBJECT wiring panel.

A legitimate machine stop is probably due to mismatched indices in data cards.

Computation times are 1.0 sec. per reflection for $I_0 \ge I_b$, 2.5 sec.per reflection for $I_0 \le I_b$.

Description of output cards

/ hhkkllaaaa / F_0 (2) / $\sigma(F_0)$ (3) /

 $\sigma(F_{\rm O})$ is the standard deviation of the observed structure factor.

Discussion

This program was designed primarily for use in conjunction with the Crystallographic Least Squares Program by Busing and Levy which employs the $\sigma(F_0)$ values for regulating the contribution of each reflection in the expression

$$\mathbf{R} = \Sigma \left[\frac{1}{\sigma(\mathbf{F}_{O})} \left(|\mathbf{F}_{O}| - |\mathbf{F}_{C}| \right) \right]^{2}.$$

R is the function minimized with respect to crystallographic parameters by the least squares refinement, F_0 and F_c are the observed and calculated structure factors, respectively.

The standard deviation of the best judged intensities $(I_0 \ge I_b)$ was estimated at 10%, that of the poorest judged (lowest observable), at 80%. Accordingly, this function was

expressed by

$$\frac{\sigma(I_{o})}{I_{o}} = \begin{cases} 0.1 & \text{for } I_{o} \ge I_{b} \\ 0.1 & (\frac{I_{b}}{I_{o}})^{3/4} & \text{for } I_{o} < I_{b} \end{cases}$$

It was learned that the experimental errors of the corrections applied to I_0 to obtain $I_c (= F_0^2)$ are much smaller than the error inherent in the visual judgement of intensities and can therefore be neglected. On the basis of this information and a standard statistical relation, one can write

$$\frac{\sigma(\mathbf{F}_{O})}{\mathbf{F}_{O}} \stackrel{\sim}{=} \frac{\frac{\sigma(\mathbf{F}_{O}^{2})}{\mathbf{F}_{O}^{2}}}{\mathbf{F}_{O}^{2}} = \frac{1}{2} \frac{\sigma(\mathbf{I}_{C})}{\mathbf{I}_{C}} \stackrel{\sim}{=} \frac{1}{2} \frac{\sigma(\mathbf{I}_{O})}{\mathbf{I}_{O}}$$

or

$$\sigma(\mathbf{F}_{o}) = \begin{cases} .05 \ \mathbf{F}_{o} & \text{for } \mathbf{I}_{o} \ge \mathbf{I}_{b} \\ .05 \ (\frac{\mathbf{I}_{b}}{\mathbf{I}_{o}})^{3/4} \cdot \mathbf{F}_{o} & \text{for } \mathbf{I}_{o} < \mathbf{I}_{b} \end{cases}$$

The calculation of $\sigma(F_0)$ is performed according to these relations.

Program listing

Following is a FORTRANSIT listing of all program steps, along with comments explaining each operation.

0	0	READ,	INB			read	Ib	
1	0	READ,	IND,	INT		read	uncorrected	l data
0	0	READ,	JND,	JNSF,	JSSTH	read	corrected d	lata

0 0 IF (IND-JND) 2, 3, 2 test for properly matched indices 2 🥙 STOP isolate F_o ... 3 0 LSF = JNSF * 1000000 $0 \ 0 \ \text{NSF} = \text{LSF} / 1000000$ then shift back 0 0 LOD = JSSTH * 1000000000 isolate breaking code ... $0 \ 0 \ \text{KOD} = \text{LOD} \ / \ 100000000$ then shift back 0 0 IF (KOD-8) 4, 4, 5 branch on breaking code 4 0 NSD = NSF / 2 calculate std. dev. for $I_{o} \geq I_{b}$ 0 0 GO TO 6 5 0 L = INT / 1000 float 1000 Ib/I 0 0 A = INB / Lcalculate std. dev. for 0 0 NSD ((A**.75)*NSF) $I_0 \langle I_b$ 353 1000 x 2 0 1 / 353 6 0 PUNCH, IND, NSF, NSD punch indices, F_0 , $\sigma(F_0)$ 0 0 GO TO 1 0 0 END

APPENDIX B: OBSERVED AND CALCULATED

_ ·

.

STRUCTURE FACTORS

HKO STRUCTURE FACTORS FOR BISMUTH MONOCHLORIDE

нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC	ΗК	OBS	CALC
2	748	645-	318	278	239-	617	174	135	912	241	264-
4	558	636-	4	728	610-	618	95	93-	914	430	402
6	239	292	4 1	143	97	7 1	281	241-	915	84	115
8	381	449-	4 2	402	370-	7 2	183	157-	916	106	23
10	229	304-	43	612	565	73	865	924	917	112	104-
12	180	250	44	453	385	74	690	678	10	455	403-
14	107	108	4 5	1109	1113-	75	986	864-	101	163	143-
16	326	378-	4 6	171	136	76	513	424-	10 2	908	1047
18	253	258	47	562	518	77	254	182-	10 3	103	65-
13	336	422	48	300	286	79	603	572	10 4	331	286-
1 4	93	64	4 9	519	472	710	265	269-	10 5	197	140-
15	513	610	411	438	516-	711	409	402	10 6	175	158-
1 6	90	75-	412	126	115	712	104	126	10 7	166	140-
1 7	308	379-	413	188	242	713	222	260-	10 8	157	105
1 8	274	405	416	122	94-	714	218	148-	10 9	190	117-
19	124	62-	417	211	193-	715	90	52-	1010	333	260-
110	112	155-	418	95	110	716	131	136	1011	155	71
111	495	681-	419	136	128-	717	129	118	1016	79	100
112	96	75	5 1	108	88	718	144	91	1017	102	119
113	231	248	5 2	142	124-	8	678	744-	11 1	482	526
116	253	245-	53	748	749-	81	118	99-	11 2	859	1004-
117	142	136	5 5	181	130-	83	147	97	11 3	102	77-
22	280	272	56	103	68	84	171	142	11 4	313	272
24	467	536	57	427	365	85	205	146-	11 6	428	308
25	620	736	59	337	330	86	489	378	11 7	265	228
26	890	1206-	510	222	253-	87	175	92	11 8	734	656-
27	154	117	511	188	173	88	270	281-	11 9	902	880-
28	176	224	512	468	487	8 9	405	320-	1110	243	297
29	272	283-	513	176	146	811	95	79 -	1111	152	138
210	407	477	514	240	275-	814	151	106-	1112	259	251
211	494	603	515	171	154-	815	71	49 -	1113	91	88-
212	220	278-	517	197	140-	816	350	294	1114	231	268 -
215	360	391-	518	47	78	817	259	275	1115	149	143
217	110	96	519	82	100	818	82	89-	1116	164	83
219	144	174-	6	514	404-	91	509	544	1117	40	3
32	133	122-	61	823	864-	92	664	663	12	204	217
33	567	557 -	62	528	547 -	93	163	144-	12 1	124	114
34	261	260	63	525	489	94	321	280-	12 2	558	617
35	799	872	64	240	208	95	409	351 -	12 3	101	17
36	348	391 -	65	243	126	96	6 85	613-	12 4	268	290-
37	162	192-	66	872	837	97	307	270	12 5	189	84-
38	601	759	68	151	136	98	654	584	12 6	86	54-
39	281	269	610	252	213-	99	335	286 -	12 8	277	173 -
310	86	65	611	108	108-	910	432	395-	12 9	293	216
316	77	52 -	614	241	250	911	171	167	1210	133	47

нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC
1211 1212 1213 1214	101 74 141 299	18- 61 170 254-	1515 1516 16 16 1	163 87 459 238	148- 75- 450- 245	19 7 19 8 19 9 1911	161 221 86 72	119- 225- 120 93	2310 2311 2312 24 1	65 104 91 250	48 82- 56- 266
1216	60 252	70	16 2	85 261	57 -	1913	74 80	17 47	24 3	225	207
13 1	507	583 -	16 5	426	391	20	646	7.37	24 5	361	334-
13 2	263	238	16 6	166	117	20 2	259	263-	24.6	189	133-
13 4	486	475-	16 8	189	187	20 4	89	75-	24 8	·104	109
13 5	218	177-	16 9	270	270-	20 6	241	244	24 9	148	84
13 6	511	408	1610	239	199	20 8	244	14/-	2410	60 86	35-
1312	124	81 -	1612	113	110	2011	236	137-	25 2	183	188-
1313	319	289-	1614	80	32-	2012	90	110	25 3	111	83-
1315	240	232 105 -	1615	155	129-	2014	156	114	25 5	161	183
1317	59	47	17 3	161	130-	21 3	174	193	25 6	150	85
14	189	224	174	127	140	21 4	129	108-	25 7	90	15
14 1 14 3	100	525 71-	17 6	149	188	21 7	303	208-	25 8	110	80
14 4	440	435-	17 7	79	37-	21 8	119	82-	2510	56	9-
14 5	311	307	178	494	458 - 261	21 9	175	178 253-	26 26 1	112	99 230-
14 7	137	146-	1710	228	138	2112	144	107	26 2	200	168-
14 9	209	164	1711	139	122	2113	129	108	26 3	242	272
1410	90 287	91 196	1713	130	98 - 72	22	153	125 292 -	26 4 26 5	54 222	82 - 192
1412	97	90	18	273	369-	22 3	185	166-	26 6	170	144
1413	266	171-	18 1	290	310	22 4	410	354	26 7	139	135-
1414	70 88	32-	18 3	233	265	22 5	327	132 272-	26 9	60	198
1417	164	181-	18 5	81	127-	22 7	177	135-	27 1	168	162-
15 1	150	142-	18 6	247	244-	22 8	109	112-	27 2	94	31
15 2 15 3	200	190	18 8	114	111	22 9	90 194	114-	27 6	62 135	61 106 -
15 5	177	148	1811	386	277-	2211	290	258	28 1	84	57 -
15 6	175	104	1812	82	29-	2212	148	158-	28 2	41	49-
15 /	156	674 124	1813	102	129-	23 1	164	136	28 3	40	128 46
15 9	242	250-	1815	279	260	23 3	109	69-	28 5	39	54-
1510	259	225	19 1	157	201	23 5	261	242			
1512	327	304- 234	19 3	354 140	350 128-	23 7	120	105-			
1514	160	147	19 4	196	162-	23 8	236	202			

•

•••

HK1 STRUCTURE FACTORS FOR BISMUTH MONOCHLORIDE

нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC
9	189	213	317	164	144	611	132	143-	91 1	163	131
11	112	105-	318	123	91	612	240	259	912	256	187
13	446	551	319	25	37	613	102	63-	914	151	97
15	94	71	402	398	412	614	145	179-	917	60	20
17	89	92 -	404	208	194-	615	231	232-	1001	277	310
12	343	430 -	405	275	290	617	52	37	1002	214	238 -
13	443	536 -	406	680	692 -	618	54	53	1003	452	462-
16	96	36-	407	123	83-	700	290	296-	1006	206	176
18	158	197 -	408	73	6-	702	135	134	1007	125	17
19	121	100-	409	166	159	703	675	711	1008	460	418
110	122	149	410	84	81-	704	324	271	1009	188	193 -
111	195	272	411	165	179-	705	160	137	1010	97	99-
112	129	131	412	306	323	707	244	221	1011	361	405
113	96	138-	413	216	276-	708	176	157-	1012	222	184-
114	116	146	414	75	67	709	264	212-	1013	97	66
115	100	55-	415	92	109	710	185	207	1014	99	68-
117	179	211	417	117	102-	/11	225	204-	1015	107	70
119	69	104-	418	129	123-	/12	246	254-	1017	51	15
22	221	237-	500	341	326	713	121	132	1100	576	690-
23	210	227-	501	128	854-	/14	124	128-	1102	211	200
2 2	120	121	502	148	. 32*	715	144	153-	1103	168	1/1
20	104	031~	503	125	35	/16	156	150	1104	137	172-
2 1	104	210-	504	102	170-	710	44	15-	1105	89	29
20	209	300-	505	143	130	118	150	144-	1105	244	182-
2 9	205	104-	500	201	203	201	1//	100-	1107	253	198-
210	200	164	507	121	110-	0UZ	200	294-	1100	110	135
211	207	220	500	121	212	800	203	204 600	1110	102	169-
212	201	211	510	200	250-	805	402	483-	1110	102	140
214	102	34-	511	118	120-	806	244	212	1112	234	182
217	102	03	512	162	128-	807	155	150-	1112	200	140
218	30	32-	513	156	128-	808	491	444	1114	216	229
210	<u>e</u> 1	55-	514	157	190-	809	191	140	1115	116	119-
3 3	670	721-	515	114	104	811	153	95-	1117	129	93-
34	172	132	516	130	167-	812	377	341-	1201	196	156-
3 5	831	984-	517	118	84	813	125	93-	1202	241	298-
3 6	219	247-	518	83	59	814	166	129-	1204	245	257-
37	466	516	601	125	148	818	34	16-	1205	207	193-
3 8	277	294	602	125	102	901	422	469	1207	110	99-
39	138	110	604	84	55	903	692	715	1208	173	156-
311	203	220-	605	163	126	905	171	141	1209	204	183
312	108	59-	606	207	154	906	164	153	1210	160	149
313	136	155	607	387	367	908	323	223-	1211	178	150
315	101	38	609	241	226-	909	257	195-	1212	224	179
316	84	88-	610	300	290-	910	227	174-	1214	113	130-

нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC
1215 1216 13 1 13 2 13 3 13 4 13 5 13 6 13 7 13 9 1310 1311 1312 1314 1315 1316	146 139 322 136 374 120 310 200 338 312 277 74 75 85 180 85	132 127 335- 138- 364- 78- 262- 145 323- 231 213 58 74 104- 139 92	16 3 16 4 16 5 16 6 16 8 16 9 1610 1611 1614 17 17 1 17 2 17 3 17 5 17 6 17 7	196 439 219 122 436 145 110 217 134 150 82 105 152 225 71 77	160 451 258 158- 421- 84- 138 207- 110 176 49 79 190- 281 78- 113	20 5 20 6 20 7 20 8 2010 2011 2013 2014 21 21 2 21 3 21 5 21 6 21 7 21 8 2110	153 197 62 67 121 83 158 122 172 266 73 135 101 63 252 80	159- 231 73- 31- 100 51- 177 138- 207 321- 102 121 130 70- 207- 33	2411 25 1 25 2 25 5 25 6 25 7 25 8 2510 26 3 26 4 26 5 26 4 26 5 26 8 27 1 27 2 27 3 27 4	64 96 84 74 134 120 128 81 152 99 66 142 61 73 55	85 105- 60- 131 91- 96 96- 5- 140- 104 77- 154- 73 53 35
1317	62 201	28 - 207-	178 179	71 86	33 89-	2111	74 134	97 61	27 6	85 95	99 - 81-
14 2	244	274	1710	116	71-	2113	44	18	28 3	155	161
14 3	84	49-	1712	85	4	22 2	108	152 -	284	145	149
14 4	396	438-	1713	231	167-	22 4	121	107-	29	219	280
14 6	230	218-	1714	183	160-	22 5	184	216-	29 1	103	103
14 7	353	349	18 2	451	534	22 7	66	91-	293	74	62
14 8	175	155-	18 5	287	269	22 8	152	143			
14 9	197	148-	18 6	266	236	22.9	271	220			
1410	72	24-	18 7	242	234-	2210	121	56			
1412	105	100	18 8	81	66	2211	73	59			
1413	139	104	18 9	134	-18	2212	51	29-			
1414	229	208	1810	163	128-	23	246	339-			
1415	101	149-	1012	94	10/-	23 1	70	142			
1410	24 42	24-	1010	101	100-	22 2	115	101-			
141/	212	24	1014	12	20	23 4	110	141			
15 1	1 2 7	120	1012	125	147	22 2	106	70-			
15 1	471	511-	10 2	168	147	22 8	122	110			
15 /	152	127-	10 2	100	210	22 0	147	8/-			
15 5	168	176-	19 0	115	121	23 7	54	41			
15 6	105	53	19 5	153	140	2311	90	111			
15 7	276	242	19 6	203	216-	24 2	206	222-			
15 R	122	95	19 9	143	155	24 3	212	208-			
1510	122	45	1910	85	45 -	24 4	71	52-			
1512	210	153-	1911	171	177-	24 6	201	174-			
1514	178	105-	1912	77	61-	24 9	124	126			
16 1	124	94-	1913	52	46-	2410	119	89			
16 2	131	100-	1914	118	94		~ ~ /	~ /			

HK2 STRUCTURE FACTORS FOR BISMUTH MONOCHLORIDE

нк	OBS	CALC	НК	OBS	CALC	нк	OBS	CALC	нκ	OBS	CALC
2	774	739	42	302	336 -	616	175	188	917	52	43
6	483	553 -	43	447	511-	617	66	73-	918	155	179
8	337	448-	44	220	165-	618	207	199-	10	540	532
10	404	504	45	685	682	71	336	359	10 2	251	251
12	135	126-	46	523	514	72	208	183	10 3	155	150-
14	286	403 -	47	138	132-	73	733	755 -	10 4	77	107
16	238	278	48	118	- 75	75	296	256-	10 5	211	188
18	39	65-	410	276	282-	77	458	410	10 6	564	470-
12	78	17-	411	303	297	78	570	599-	10 7	261	175-
13	288	246	412	205	236	710	197	155	10 9	213	148-
14	216	224-	413	180	123-	/12	179	182-	1010	239	207-
15	79	41-	415	111	130-	/13	333	337	1011	190	140
1 /	155	199	416	129		714	24	90	1012	1/2	115-
19	483	650 -	41/	130	145-	715	321	321-	1013	108	101-
	213	210-	410	6 / C	100 520-	717	110	150	1014	150	110
114	1/1	195	5 1	0603	529-	710	01 49	59 59	1010	07	104-
112	109	162-	52	162	124	0 110	60	20 / 1 2	1017		120
110	28	55-	5 4	671	687 -	0 8 1	433	41) 557	11 1	160	120
2 1	646	807	55	273	258-	8 2	531	565-	11 4	421	392-
2^{2}	414	366	56	378	331	83	345	342-	11 5	436	401
24	565	611-	57	109	104-	84	78	94	11 6	159	113-
2 5	397	483-	58	145	139	8 5	371	306-	11 7	565	495-
26	78	81-	59	614	577	86	341	253	11 8	414	366
2 7	435	508	510	141	137-	8 7	145	104	11 9	215	161-
29	221	254	511	314	286	88	338	258-	1110	109	15-
210	184	224-	513	215	188-	89	211	176-	1111	196	161-
215	80	46	514	117	182	810	196	144-	1112	210	155 -
216	104	100-	515	104	69 -	811	206	184-	1113	111	104-
217	149	194-	516	119	115-	813	80	19	1114	143	76
32	392	422-	517	68	47-	814	127	96	1115	98	86
33	144	129	6 1	1901	555-	815	132	121	1116	86	52
34	442	421	6 1	08	153	817	104	100	1117	82	74
35	79	49	62	259	261-	92	351	345-	12	545	658
36	325	312	63	299	257 -	93	395	378	-12-1	233	209-
38	287	282-	64	642	636	94	334	283	12 3	211	180
39	152	120-	65	336	256	96	76	84	12 4	128	149-
310	411	481	67	128	169-	97	647	564-	12 6	320	204-
311	191	159	68	216	1/6	98	604	516-	12 7	188	163-
313	187	238-	69	208	230	99	348	294	12 9	202	102
315	8/	93	610	314	314	910	121	80	1213	155	143
316	124	108-	611	144	92-	911	1//	151-	1214	77	(3-
318	121	212	612	210	214-	913	142	124~	1215	100	33-
4 / 1	341 210	312 ~	013 614	100	209-	914 016	120	120	1210	197	133-
- T	~ 1 0	T >0	014	100		111	T C V	120	1611	T 1 1	100

_

ļ

нк	OBS	CALC	нк	08 5	CALC	нк	OBS	CALC	нк	OBS	CALC
H K 13 2 13 3 13 4 13 5 13 6 13 7 13 8 13 9 1311 1312 1313 1314 1315 1316 14 1 14 2 14 3 14 4 14 6 14 9 1410 1411 1412 1414	OBS 222 251 230 331 299 267 306 244 455 164 261 160 70 69 186 135 309 165 300 115 364 157 165 162	CALC 211- 205- 272- 306 237 197 255 215- 356- 161 274 171- 59- 186- 119- 298 149 261- 12- 38 324 113 213- 122-	H K 1609 1611 1612 1613 1615 1701 1702 1703 1704 1705 1706 1708 1709 1710 1711 1713 1715 1800 1801 1804 1805 1806 1807 1808 1809	OBS 82 291 166 50 131 269 129 72 127 289 339 219 226 153 99 226 153 99 226 153 99 2379 460 178 287 141 160 168 182	CALC 44- 200- 137 69 58- 162- 298 103- 262- 280 227 234- 121 103- 280 234- 121 103- 280 234- 121- 280 234- 151- 248 119 170- 123 115-	H K 2005 2006 2008 2010 2011 2012 2013 2103 2103 2105 2106 2108 2109 2111 2112 2200 2201 2202 2203 2204 2205 2206 2207 2208 2210 2211	OBS 269 183 207 72 271 167 107 315 338 103 125 132 106 112 296 110 77 131 142 177 131 89 188 143 92	CALC 265- 167- 218- 69 217- 104- 89 312 330- 116- 74- 111- 95- 93 270 76 80 104- 134 75 167- 119- 36	H K 2603 2605 2606 2607 2608 2702 2703 2704 2706 2707 2800 2801 2802 2901	OBS 96 128 69 104 41 78 186 38 164 141 100 133 141 77	CALC 137 110 66- 127- 84 72 188- 36- 181 154 99 144 148- 90-
1415	175	86- 377-	1810	260	180-	2302	128	163-			
15 2	431	448-	1813	69	94-	2309	154	154-			
15 3	125	104	1814	89	98	2311	30	17			
15 4	458	440	1901	204	230	2312	9	25-			
15 6	110	34- 54	1902	11/	131	2400	120	132-			
15 8	124	78	1005	112	116m	2402	62	41-			
16 0	120	64	1006	150	120-	2404	81	97-			
1510	156	125	1907	96	85	2405	128	120			
1514	165	160-	1908	159	158-	2410	51	66-			
1515	82	95 -	1909	178	136-	2501	107	149-			
16 1	323	369	1910	110	175-	2502	77	60			
16 2	262	310-	1911	284	197	2504	77	101-			
16 3	310	292	1912	231	181	2505	100	96			
16 4	122	150-	1913	40	10	2506	156	111			
16 5	314	305-	1914	5 0	26-	2508	67	105			
16 6	347	317	2000	236	278-	2509	89	63			
16 7	473	410	2001	149	160-	2600	203	193-			
16 8	166	101	2002	205	227	2004	166	152			

•

·····

HK3 STRUCTURE FACTORS FOR BISMUTH MONOCHLORIDE

- --

нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC
1	398	476-	38	386	320	617	108	115	915	144	176-
3	11843	1239	310	234	216-	618	73	52 -	916	37	28
5	911	919-	311	89	105	7	801	853	917	72	72
7	138	125-	312	101	164	71	800	835	10 1	88	100
9	189	166	316	102	50 -	72	309	311-	10 2	187	194-
11	296	378	317	128	98	73	186	180	10 3	371	289-
15	304	290	4 1	106	118-	75	268	218	10 4	198	155-
1 1	335	285	43	174	151	76	328	279	10 5	409	310
12	259	213	45	215	160	77	154	198	10 6	229	242
13	507	533 -	46	88	58	78	180	91 -	10 7	449	538 -
14	322	290-	47	97	41	710	114	104-	10 8	244	229
15	265	222-	48	761	982 -	711	216	219-	10 9	402	357
16	264	234	410	335	357	713	90	52 -	1010	109	20
17	115	116	411	79	3	714	86	86	1011	209	192
18	282	245 -	412	287	324	716	108	97 -	1012	223	205-
19	147	128	413	287	317-	717	218	185-	1017	168	127
110	155	138	415	90	147	718	54	38 -	11	223	220-
112	168	179	417	94	84-	81	127	118	11 1	396	392
113	230	218-	5	308	296 -	82	266	249-	11 2	151	112-
115	166	139	52	292	304	84	526	513	11 3	324	332
116	236	232	53	509	481-	86	522	497	11 4	330	329
117	81	52	54	268	283	89	221	184	11 5	506	545-
118	71	108-	55	194	162	810	105	127	11 6	539	530 -
21	412	356	56	202	182-	811	34 0	336-	11 8	195	173
22	517	489	57	156	177-	812	339	365 -	11 9	181	196
23	570	527 -	59	300	309	813	115	217	1110	76	43
24	346	331-	510	136	128	814	84	86-	1111	200	172-
25	170	108-	511	125	116-	815	77	64-	1113	235	194
26	594	686-	512	266	265-	816	97	38-	1114	297	306
27	440	534	513	189	195-	817	66	61-	1115	77	63
29	528	626-	514	243	280-	9	179	144	1110	60	29-
210	144	176	515	196	249	91	223	149	1117	160	165-
211	2 (1)	338	-10	78	38	9 2	133	143	12 1	167	139
213	198	151	517	67	63-	93	254	232	12 2	211	190-
214	4 / 4	429	518	58	35	94	392	376	12 3	356	313-
216	130	105-	62	/16	807	95	770	812	12 4	276	280-
217	58	45-	63	408	315	96	314	256	12 2	84	128
218	141	123-	64	476	519-	9 /	312	300-	12 0	102	113-
3	595	482-	60	358	342	98	150	90 -	12 8	345	221
2 2	4/0	400		149	124-	7 7	417	419-	12 9	247	221 20
53	9413	430-		101	100-	910	200	04	1210	122	07 194-
24	403	427	612	201	176-	911	570 111	410	1211	1/1	120-
22	220	211-	610	120	126	912	5 C T T T	108-	1212	257	222
37	169	175	615	157	152-	914	228	147	1212	109	116-
~ /			~ ~ ~ /					- 1 1			V

нк	OBS	CALC	ΗК	OBS	CALC	нк	OBS	CALC
1215	55	22	1610	148	110-	2104	79	70-
1216	127	141	1611	168	169-	2105	88	75-
13	748	912	1614	166	150	2106	201	207
13 1	558	648-	1700	293	298	2108	224	190-
132	547	598-	1701	127	88-	2109	112	108
$1\overline{3}$ $\overline{3}$	153	128-	1702	105	74	2112	145	112
13 4	94	99-	1703	194	164	2201	114	114
13 5	72	74-	1704	178	169-	2202	104	43
13 6	375	340	1705	248	173-	2203	130	90-
13 7	328	316-	1706	179	141	2204	227	222-
1311	138	141	1707	297	263	2205	226	261-
1312	144	137	1708	133	56	2206	72	47-
1314	85	108	1709	72	8	2207	245	211
1316	137	139-	1710	282	204-	2208	185	216
14 1	254	245-	1711	176	212-	2211	138	125
14 2	202	184-	1714	103	100-	2300	293	336-
14 3	103	53	1801	261	245	2302	122	76
14 5	130	131	1802	150	142	2303	189	181-
14 6	297	293 -	1803	101	155-	2304	86	58-
14 8	94	67-	1804	290	273	2306	88	97
14 9	191	173	1805	133	146	2308	78	91
1410	214	164-	1806	196	147	2309	171	114-
1411	124	155-	1809	331-	-313-	2402	299	344-
1412	282	342	1810	194	197 -	2403	72	56-
1413	136	103	1812	119	136	2407	94	73
1415	111	134-	1813	46	20-	2408	211	243-
1416	58	31-	1814	112	113-	2500	212	229-
15	156	126-	1900	177	170-	2501	62	68
15 1	271	2 55-	1901	220	215-	2502	93	86
15 3	160	169 -	1902	277	296	2503	103	132-
15 4	286	261	1903	284	285	2505	41	20-
15 5	261	240-	1904	96	57	2601	65	80-
15 6	262	258-	1905	209	242	2602	167	207
15 7	234	235	1906	107	109-	2603	142	102
15 8	207	122	2003	327	366	2604	283	262-
1510	309	305	2004	168	117	2605	64	64
1512	271	255 -	2005	329	325 -	2606	60	51
1514	174	146-	2006	78	100	2700	118	134
1515	73	62 -	2008	123	98	2701	53	35
16 3	140	120	2009	82	81	2703	49	51-
16 4	294	277	2011	88	143	2704	77	78-
16 5	289	277	2013	55	49-	2705	87	73
16 6	410	507 -	2100	113	121-	2801	45	28
16 8	156	124	2101	83	141	2803	49	33
16 9	76	1-	2103	152	134			

.

_

-

HK4 STRUCTURE FACTORS FOR BISMUTH MONOCHLORIDE

Н	IK	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC	ΗК	OBS	CALC
		1734	1956	39	141	167-	- 613	136	75-	10 6	509	563 -
	2	196	82	310	217	265	614	171	168	10 7	148	132-
	4	467	437-	311	83	84	615	162	138	10 9	117	104-
	6	109	83	312	63	57-	616	62	33	1010	61	12
	8	365	431-	316	117	86-	72	257	220	1011	82	78
	12	113	133	317	82	36-	73	251	209	1012	125	185-
	14	153	140-	4	781	697-	74	181	151	1015	53	47
	18	98	102	4 1	154	83	75	4/1	456-	1016	16	86
	1 2	414	374 567	4 2	120	125-	7 0	101	107-		514	374 656-
	1 2	202	202	44	301 354	237	7 0	104	105-	11 2	417	474-
	14	209	122	4 2	204	102-	7 9	300	140	11 2	122	272
	1 6	154	115-	40	179	159	712	117	126-	11 6	122	84
	1 7	177	162-	4 8	153	183	715	147	125-	11 7	96	117-
	1 8	391	482	49	213	219	716	96	105	11 8	234	211-
	1 9	225	216-	411	128	107-	717	36	39	11 9	418	447-
	110	65	100-	412	87	81	8 1	109	43-	1110	137	162
	111	266	326-	413	94	66	8 2	316	327-	1111	82	33-
	112	147	153-	416	42	23-	83	253	187-	1112	62	72
	113	67	39	417	175	178-	85	246	161	1114	61	114-
	114	189	222	51	276	240-	86	340	376	1115	86	79
	115	135	109	52	142	121	88	155	196 -	1116	121	79
	116	162	184-	5 3	201	151 -	89	323	332-	12	623	648
	117	108	98	54	190	135-	810	120	79 -	12 1	155	157
	118	118	108-	55	159	162-	816	130	82	12 2	144	157
	2 2	434	319	56	285	287	817	173	219	12 3	143	140
	23	198	178-	58	168	207-	91	315	325	12 4	261	252-
	24	149	65 -	59	390	459	92	24/	191	12 5	262	245-
	2 2	240 451	324 461-	211 512	237	220	94	100	117-	12 8	308	84 -
	2027	158	158	512	100	84-	2 7 A 9	217	216-	1210	115	106-
	2 8	150	127	514	118	115-	97	97	57-	1210	96	87
	2 9	100	69-	515	101	60=	c s	71	49	1212	12.6	162
	210	124	100	516	79	41-	ý ý	63	18-	1214	85	94-
	211	263	352	517	58	47-	910	137	143-	1215	20	53
	212	86	78-	6	475	482-	912	126	142-	1216	104	86-
	215	198	192-	61	115	23	913	63	65	13 1	284	270-
	216	62	28-	6 2	404	388-	914	213	250	13 3	496	529
	3 1	295	213	63	137	91	915	86	69	13 4	217	223-
	3 2	310	206-	64	193	219	10	27 2	263-	13 6	390	299
	3 3	531	568 -	66	480	468	10 1	74	13	13 7	92	51-
	34	264	230	68	117	114	10 2	54 4	618	13 8	151	194
	35	394	419	69	202	208	10 3	177	118-	13 9	86	26
	3 7	271	250	610	95	55-	10 4	243	223	1311	175	171-
	3 8	169	151	611	199	221-	10 5	102	29-	1312	81	78

-										
нк	08 S	CALC	н	κ	OBS	CALC	н	к	03 5	CALC
1212	69	36-	17	04	157	154	22	204	82	98
1214	07	134-	17	05	84	24	22	205	68	23
1215	00	101	17	06	83	63-	22	206	47	58-
1/1/	100	214	17	07	104	112	22	207	70	50-
14	150	214	17	02	112	81-	22	202	102	116-
14 1	100	130-	17	00	145	02	20	200	70	42-
14 2	141	150-	17	11	147	95	20	207	125	74
14 5	00	90	11	11	15	90	2:		127	150-
14 4	90	14/-	11	14	44	22	22		112	102-
14 7	330	349	10	00	234	200-	23		114	100-
14 6	113	126	18	01	12	42~	2:	504 205	110	120
14 /	140	1/1-	19	06	62	105	2:		113	129
1410	147	146	18	80	152	105	23	306	70	5/-
1411	242	252	18	10	133	98-	23	307	94	12
1412	68	11-	18	11	177	163-	23	808	56	75
1413	91	71-	19	01	91	116	23	309	156	183-
1414	84	84-	19	06	74	2-	24	+00	120	91-
1415	131	98 -	19	07	163	76 -	24	+01	154	171
15 1	220	250 -	19	08	207	247 -	24	+02	126	116
15 2	109	42	19	09	78	50	24	+03	74	63
15 3	163	110-	19	10	85	79-	24	+04	76	46
15 5	152	96	19	11	167	152	24	+05	149	110-
15 6	66	55-	19	12	163	140	21	406	131	106-
15 7	291	285	20	00	248	232	24	+07	150	122
15 8	302	248	20	01	143	128-	24	+08	35	75
1510	131	77	20	02	64	11-	25	501	79	105-
1511	91	82	20	05	142	89-	2:	502	58	106-
1512	190	156-	20	06	128	99	25	503	52	60
1513	98	84	20	80	168	163-	25	504	84	74
1514	67	50	20	09	62	23	25	505	89	108
1515	112	105-	20	10	101	88-	25	506	124	124
16	327	391-	20	11	178	140-	20	501	38	44-
16 1	242	234	21	01	60	45	26	502	59	91-
16 2	154	84-	21	02	121	123	28	503	133	181
16 3	91	39	21	03	261	287	26	504	80	69-
16 4	130	57	21	04	158	167-	26	505	78	105
16 7	217	201	21	05	188	205-	21	506	83	90
16 9	161	143	21	06	201	146-	2	701	67	90-
16 0	120	128-	21	07	116	96-	2	702	- 85	109
1610	101	100	21	<u>0</u>	2/	40	2.	702	27	42-
1610	101	190	21	10	97	70-	٤	105	וכ	49-
1612	04 64	51	21	11	112	125-				
1012	04	22-	21	7 1	161	120-			•	
1014	40	<i>م کر د</i>	22	00	127	120-				
11 1	74	0	22	01	100	137-				
17 2	12	58	22	02	120	75 122-				
113	210	213-	22	03	131	126-				

-

HK5 STRUCTURE FACTORS FOR BISMUTH MONOCHLORIDE

нк	OBS	CALC	ΗК	OBS	CALC	ΗК	OBS	CALC	нк	OBS	CALC
3	554	384-	38	106	153	67	290	305	913	99	11
5	121	33 -	39	108	82	68	145	111	914	57	43
9	130	134	311	227	218-	6 9	262	218-	10 1	201	188
11	117	206-	312	64	80-	610	237	277-	10 2	102	118-
13	364	533	313	137	159	612	221	272	10 3	235	253-
15	88	34-	314	67	20	614	186	192-	10 4	70	55
17	94	102-	315	41	29	615	227	191-	10 5	225	180-
1	321	319	316	77	104-	7	522	483-	10 6	95	79
1 1	354	375-	317	105	106	7 1	193	121-	10 /	185	96
1 2	537	397-	4 1	122	84-	7 2	264	191	10 8	319	321
13	407	211-	4 2	406	340	13	545	539	10.9	232	245-
14	96	40	44	200	100-	7 4	234	233	1010	19	103-
	11	20 **	4 5	101	104		1/1	154-	1012	204	108-
	107	145-	40	222		7 0	144	160	1012	72	54-
1 2	134	100-	4 1	272	139-	710	100	234	1014	88	72
1 9	134	102-	40	122	139	711	122	152-	11	501	544-
110	106	129	410	220	188-	712	201	235-	11 1	158	1.52-
111	159	188	411	165	165-	713	127	148	11 2	207	192
112	51	55	412	187	197	714	158	155-	11 4	262	262-
113	46	41-	413	140	209-	715	177	149-	11 5	215	203
114	146	132	414	69	51	716	165	179	11 7	227	182-
115	108	64-	415	63	72	8 1	173	139-	11 8	61	83
117	146	174	416	56	17	82	310	241-	11 9	94	79-
21	136	78-	417	68	68-	83	468	473	1110	132	155-
22	527	405-	5	375	279	84	445	441	1111	212	219
23	110	73-	51	785	734-	85	451	419-	1112	202	169
24	276	170	52	151	96-	87	120	107-	1114	112	126
25	161	166	53	279	170	88	307	311	1115	99	134-
26	523	513-	54	262	188-	812	200	177-	12 1	164	172-
27	326	33/-	55	148	131	813	155	133-	12 2	120	143-
28	281	211-	56	262	243	814	125	11/-	12 4	210	197-
2 9	157	122	- /	130		815	27	44 50	12 7	200	122-
210	200	202	50	107	6U 07	010	60	22	12 0	102	192-
212	291	502	5 7	121	04 245-	91	422	221	12 7	102	00
214	50 57	20~	510	220	240-	92	104	0 <i>3</i> 524	1210	104	77
215	21	90 07	516	110	112-	9) 0 /	201	183-	1211	190	117
211	202	102-	515	55	10	74	120	105-	1212	145	72-
2 2	100	18-	516	166	160-	9 9	262	218	1215	75	72-
2 2	322	274-	6 1	180	130	90	160	122	1214	101	108
34	255	158	6 2	129	52 -	98	232	184-	13	334	295-
35	722	761-	63	217	187-	99	108	<u>5</u> 7-	13 1	132	150-
3 6	294	241-	64	179	146	910	197	207-	13 2	90	39
3 7	396	384	65	174	85	912	210	152	13 3	317	296-

. .

нк	OBS	CALC	нк	OBS	CALC	нк	OBS	CALC
H K 13 5 7 9 1310 1311 1313 1314 14 14 6 7 8 9 1311 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 16 6 7 16 16 16 16 16 16 17	OBS 187 187 203 188 219 53 1019 261 349 124 185 261 244 185 261 219 261 242 184 263 1834 124 185 261 139 299 1328 150 151	CALC 206-229-191 213 25-135-132-230-379-320-204-37-59-320-204-76-76-73-76-76-76-76-76-76-76-76-76-76-76-76-76-	H K 17 7 17 8 1710 1711 1712 1713 18 2 18 4 18 5 18 6 18 7 18 18 18 12 19 3 19 4 19 5 19 19 19 12 20 3 20 8 2010 21 2 21 3 21 4 5 21 7 21 8 21 1 21 2 21 7 21 8 21 1 21 2 21 7 21 8 20 10 20 20 20 10 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 20 20 20 20	OBS 63 50 67 29 178 350 278 350 29 178 350 29 178 350 29 178 350 20 100 147 111 84 120 103 230 81 838 54 178 100 2308 81 838 54 178 100 178 100 178 100 178 100 178 100 178 100 100 100 100 100 100 100 10	CALC 25 12 49- 47 154- 467 134- 214 176 234- 162 108 90 205- 132- 156 170- 162 61- 176- 196 205- 101- 234- 61- 156- 101- 234- 151- 234- 151- 234- 151- 234- 156- 157- 157- 157- 158- 1	H K 23 1 23 2 23 2 23 2 23 2 23 2 23 2 23 2	OBS 91 127 141 114 94 27 48 85 157 246 166 51 144 26 64	CALC 122 117- 124 129- 79- 81 26- 109- 177- 59- 137- 75- 50- 137- 50-
17 1 17 1 17 3	89 202	82 213-	22 5 22 7 22 8	130 146 85	133- 147- 67			
17 5	280	323	22 9	196	211			
17 6	52	77-	23	179	194-			